T. Popoviciu, Sur l’approximation des fonctions convexes d’ordre supérieur (II), Bull. de la Sect. sci. de l’Acad. Roum., 20 (1938) no. 7, pp. 50-53; 192-195 (in French).
Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie
Publisher Name
Romanian Society of Mathematical Sciences
DOI
Print ISSN
Online ISSN
[Zbl 0021.11701,JFM 64.1025.01]
google scholar link
??
Paper (preprint) in HTML form
1938 b -Popoviciu- Bull. Sect. Sci. Acad. Roum. - On the approximation of convex functions of order
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
BULLETIN
No. 7
SUMMARY
ON THE APPROXIMATION OF HIGHER ORDER CONVEX FUNCTIONS
BYTIBERIU POPOVICIUNote presented by MG Tzitzéica, MAK
I. - In a previous work^(1){ }^{1}), I have demonstrated that any functionint(x)\int(x)continues in a finite and closed interval (a,ba, b) is the limit of a uniformly convergent stite of polynomials that preserve all the convexity properties off(x)f(x)This property is realized by MS Bernstein polynomials.
But, in general, nothing can be said about the convexity characteristics of polynomials (II), outside the interval (a,ba, b). In the following we will demonstrate the following property:
Any continuous, non-concave function of ordernnin the meantime (a,ba, b) is the limit of a uniformly convergent series in this interval of polynomials which are convex of ordernneverywhere, so in(-oo,+oo)(-\infty,+\infty).
We assume, of course, thatf(x)f(x)does not reduce to a polynomial of degreenn.
2. - If we say that a non-negative function is non-concave of order - 1 , the previous property is also true forn=-1n=-1. Indeed, in this case there exists a continuous functiong(x)g(x)such that we havef(x)=g^(2)(x)f(x)=g^{2}(x)In(a,b)(a, b). So thenM=max|g(x)|M=\max |g(x)|Andepsi\varepsilonyour positive number.(a,b)(a, b)
According to Weierstrass's theorem for all0 < epsi^(') < min(I,(epsi)/(2M+I))0<\varepsilon^{\prime}<\min \left(\mathrm{I}, \frac{\varepsilon}{2 M+\mathrm{I}}\right)there exists a polynomialP(x)P(x)such as|gP| < epsi^(')|gP|<\varepsilon^{\prime}In(a,b)(a, b). We have
|P| < M+I,|g+P| < 2M+I" in "(a,b),|P|<M+I,|g+P|<2 M+I \text { in }(a, b),
SOquad|fP^(2)|=|g^(2)-P^(2)|=|gP||g+P| < epsi^(')(2M+1) < epsi\quad\left|fP^{2}\right|=\left|g^{2}-P^{2}\right|=|gP||g+P|<\varepsilon^{\prime}(2 M+1)<\varepsilon, In(a,b)(a, b), which demonstrates the property.
We can now demonstrate the property fornnany. Let us therefore suppose thatf(x)f(x)be non-concave of ordernnIn(a,b)(a, b)and eitherepsi\varepsilonany positive number. We can determine ammsuch that we have
{:(2)|f-P_(m)| < (epsi)/(2)","" in "(a","b):}\begin{equation*} \left|f-P_{m}\right|<\frac{\varepsilon}{2}, \text { in }(a, b) \tag{2} \end{equation*}
P_(m)P_{m}being the polynomial ( I ), generally of degree> n>n. In this caseP_(m)^((n+1)) >= 0P_{m}^{(n+1)} \geqq 0In(a,b)(a, b), so there exists a polynomial that is everywhere non-negativeP(x)P(x)such that the origin has
|P_(m)^((n+1))-P| < (epsi(n+1)!)/(2(ba)^(n+1)),quad" in "(a,b)\left|P_{m}^{(n+1)}-P\right|<\frac{\varepsilon(n+1)!}{2(ba)^{n+1}}, \quad \text { in }(a, b)
The polynomial
Q(x)=int_(a)^(x)((xt)^(n))/(n!)P(t)dt+sum_(i=0)^(n)((xa)^(i))/(i!)P_(n)^((i))(a)Q(x)=\int_{a}^{x} \frac{(xt)^{n}}{n!} P(t) d t+\sum_{i=0}^{n} \frac{(xa)^{i}}{i!} P_{n}^{(i)}(a)
is convex of ordern(-oo,+oo)n(-\infty,+\infty)and we have
from where
(3)quad|P_(m)-Q| < (epsi(n+1)!)/(2(b-a)^(n+1))*((x-a)^(n+1))/((n+1)!) <= (epsi)/(2)\quad\left|P_{m}-Q\right|<\frac{\varepsilon(n+1)!}{2(b-a)^{n+1}} \cdot \frac{(x-a)^{n+1}}{(n+1)!} \leq \frac{\varepsilon}{2}, In(a,b)(a, b).
From (2) and (3) we deduce that
|f-Q| <= |f-P_(m)|+|P_(m)-Q| < (epsi)/(2)+(epsi)/(2)=epsi," dans "(a,b)|f-Q| \leq\left|f-P_{m}\right|+\left|P_{m}-Q\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \text { dans }(a, b)
which demonstrates the property.
3. We will give another demonstration forn=1n=1, using MS Bernstein polynomials directly. Let us divide the interval(a,b)(a, b)inrrequal parts by points
x_(i)=a+i(b-a)/(r),quad i=0,1,dots,rx_{i}=a+i \frac{b-a}{r}, \quad i=0,1, \ldots, r
and eitherL_(gamma)(x)L_{\gamma}(x)the function represented by the polygonal line of vertices(x_(i),f(x_(i)))\left(x_{i}, f\left(x_{i}\right)\right). We know thatL_(gamma)(x)rarr f(x)L_{\gamma}(x) \rightarrow f(x)Forr rarr oor \rightarrow \infty, uniformly in (a,ba, b). If we consider continuous functions
{:[varphi_(i)(x)={[0","," dans "(a,x_(i))],[x-x_(i)","," dans "(x_(i),b)]:}],[i=1","2","dots","r-1]:}\begin{aligned}
\varphi_{i}(x) & = \begin{cases}0, & \text { dans }\left(a, x_{i}\right) \\
x-x_{i}, & \text { dans }\left(x_{i}, b\right)\end{cases} \\
i & =1,2, \ldots, r-1
\end{aligned}
we can write^(2){ }^{2}) L_(r)(x)=f(a)+[a,x_(1);f](x-a)+sum_(i=0)^(gamma)(x_(i+2)-x_(i))[x_(i),x_(i+1),x_(i+2);f]varphi_(i+1)(x)L_{r}(x)=f(a)+\left[a, x_{1} ; f\right](x-a)+\sum_{i=0}^{\gamma}\left(x_{i+2}-x_{i}\right)\left[x_{i}, x_{i+1}, x_{i+2} ; f\right] \varphi_{i+1}(x).
We now see that it is sufficient to demonstrate the property for functionsvarphi_(i)(x)\varphi_{i}(x). Let us extend this function in the interval
varphi_(i)(x)={[0","," dans "(x_(i)-b+a,x_(i))],[x rarrx_(i)","," dans "(x_(i),x_(i)+b-a)]:}\varphi_{i}(x)= \begin{cases}0, & \text { dans }\left(x_{i}-b+a, x_{i}\right) \\ x \rightarrow x_{i}, & \text { dans }\left(x_{i}, x_{i}+b-a\right)\end{cases}
and eitherP_(m,i)(x)P_{m, i}(x)the MS Bernstein polynomial of degreemmof this function in the interval(x_(i)-b+a,x_(i)+b-a)\left(x_{i}-b+a, x_{i}+b-a\right). We verify, by a direct calculation, thatP_(m,i)^('')(x) >= 0P_{m, i}^{\prime \prime}(x) \geq 0partnership, thereforeP_(m,i)P_{m, i}is convex (of orderII) In(-oo,-oo)(-\infty,-\infty)ifmmis even. We now see that ifepsi\varepsilonis any positive number, if we determine the positive integersgamma\gammaAndssso that
and if we ask Q(x)=f(a)+[a,x_(1);f](x-a)+sum_(i=0)^(r-2)(x_(i+2)-x_(i))[x_(i),x_(i+1),x_(i+2);f]P_(2s,i+1)(x)Q(x)=f(a)+\left[a, x_{1} ; f\right](x-a)+\sum_{i=0}^{r-2}\left(x_{i+2}-x_{i}\right)\left[x_{i}, x_{i+1}, x_{i+2} ; f\right] P_{2 s, i+1}(x).
the polynomialQ(x)Q(x)is everywhere convex (of order I) and we have
|f-Q| < epsi," dans "(a,b)|f-Q|<\varepsilon, \text { dans }(a, b)
Note that formmeven polynomialsP_(m,i)P_{m, i}are increasing in the interval(x_(i)-b+a,+oo)\left(x_{i}-b+a,+\infty\right). So we also have the following property:
Any continuous, non-decreasing, non-concave (order I) function in the interval (a,ba, b) is the limit of a uniformly convergent sequence of polynomials which are increasing in (a,+ooa,+\infty) and convex (of order 1) in(-oo,+oo)(-\infty,+\infty).
It is clear that we can find approximation polynomials such that they are increasing in the interval (c,+ooc,+\infty),ccbeing a number<= a\leq abut, it is obvious, that we cannot takec=-ooc=-\infty. A similar property holds for continuous non-increasing and non-concave functions. In this case the polynomials are decreasing in
(-oo,d)", où "d >= b". "(-\infty, d) \text {, où } d \geq b \text {. }ù
We can also obtain sequences of polynomials of indefinite approximation preserving several convexity properties at the same time, everywhere or in intervals(c+oo),(-oo,d)(c+\infty),(-\infty, d), but we do not dwell on these questions further here.
Cernăuti, September 27, 1938.
^(1){ }^{1}) See: Tiberiu Popoviciu, On the approximation of convex functions of higher order, «Mathematica», vol. X (1935), pp. 49-54.
^(2)){ }^{2)}For notations, see my previous work. ^(3)){ }^{3)}If[x_(i),x_(i+1),x_(i+2);f]=0\left[x_{i}, x_{i+1}, x_{i+2} ; f\right]=0, we can remove from our considerations the functionphi_(i)\phi_{i}corresponding.