## Abstract

The present paper represents a continuation of [2]. There, a quasistatic contact problem for viscoplastic materials was considered, in which the contact was assumed to be frictionless and was described with normal compliance and unilateral constraint; the unique weak solvability of the problem was proved, a fully discrete scheme for the numerical approximation of the problem was described and numerical simulations were presented. In the present paper we analyse the dependence of the solution of the viscoplastic contact problem in [2] with respect to the data. We state and prove a convergence result, Theorem 3.1, then we illustrate its validity in the study of a two-dimensional numerical example.

## Authors

Mikael** Barboteu**

(Laboratoire de Mathématiques et Physique, Université de Perpignan)

Flavius **Patrulescu**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Ahmad **Ramadan**

(Laboratoire de Mathématiques et Physique, Université de Perpignan)

Mircea **Sofonea**

(Laboratoire de Mathématiques et Physique, Université de Perpignan)

## Keywords

viscoplastic material; frictionless contact; normal compliance; unilateral constraint; weak-solution; convergence results; numerical simulations

## Cite this paper as:

M. Barboteu, F. Pătrulescu, A. Ramadan, M. Sofonea, *On the behaviour of the solution to a viscoplastic contact problem*, in Advances in Mathematics, eds. L. Beznea, V. Brinzănescu, M. Iosifescu, G. Marinoschi, R. Purice, D. Timotin, pp. 75-88, The Publishing House of the Romanian Academy, 2013.

## About this paper

##### Title

Advances in Mathematics

##### Publisher Name

Editura Academiei Romane

(The Publishing House of the Romanian Academy)

##### Editors

L. Beznea, V. Brinzănescu, M. Iosifescu, G. Marinoschi, R. Purice, D. Timotin

##### Print ISSN

##### Online ISSN

## MR

3203417

## ZBL

?

[1] Alart, A. Curnier, *A mixed formulation for frictional contact problems prone to Newton like solution methods*, Computer Methods in Applied Mechanics and Engineering, 92 (1991), 353–375.

[2] Barboteu, A. Matei, M. Sofonea, *Analysis of quasistatic **viscoplastic contact problems with normal compliance*, *Quarterly **Jnl. of Mechanics and App. Maths*. . ?????

[3] Cristescu, I. Suliciu, *Viscoplasticity*, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest, (1982).

[4] Han, M. Sofonea, *Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics*, 30, American Mathematical Society–International Press, Sommerville, MA (2002).

[5] R. Ionescu, M. Sofonea, *Functional and Numerical Methods **in Viscoplasticity*, Oxford University Press, Oxford (1993).

[6] Jarusek, M. Sofonea, *On the solvability of dynamic **elastic-visco-plastic contact problems*, Zeitschrift fur Angewandte Matematik und Mechanik (ZAMM), 88 (2008), 3-22.

[7] B. Khenous, P. Laborde, Y. Renard, *On the discretization of contact problems in elastodynamics*, Lecture Notes in Applied Computational Mechanics, 27 (2006), 31-38.

[8] B. Khenous, J.-C. Pommier, Y., Renard, *Hybrid discretization of the Signorini problem with Coulomb friction. Theoretical aspects and comparison of some numerical solvers*, Applied Numerical Mathematics, 56 (2006), 163-192.

[9] Laursen, *Computational Contact and Impact Mechanics*, Springer, Berlin (2002).

[10] Shillor, M. Sofonea, J.J. Telega, *Models and Analysis of Quasistatic Contact*, Lecture Notes in Physics, 655, Springer, Berlin (2004).

[11] Sofonea, A. Matei.* History-dependent quasivariational **inequalities arising in Contact Mechanics*, Eur. J. Appl. Math., 22 (2011), 471-491.

[12] Sofonea, A. Matei,* Mathematical Models in Contact Mechanics*, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).

[13] Wriggers, *Computational Contact Mechanics*, Wiley, Chichester (2002).

soon