On the construction of approximating linear positive operators by probabilistic methods


We present a new probabilistic method for constructing a sequence of linear positive operators
used in uniform approximation of the continuous functions of two variables.

We study the convergence of the sequence and we evaluate the approximation order.
Finally, we present some examples which extend the results obtained in [2] to the case of two variables.


Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania


 bidimensional linear positive operator; probability space; order of approximation; modulus of continuity

Paper coordinates

O. Agratini, On the construction of approximating linear positive operators by probabilistic methods, Studia Univ. “Babes-Bolyai”, Mathematica, 38 (1993)  no. 4, pp. 45-50.


About this paper


Studia Universitatis “Babes-Bolyai” Mathematica

Publisher Name
Print ISSN


Online ISSN


google scholar link

[1] Chency, E.W. and Sharma, A.,  On a generaization  of Bernstein polynomials,  Rev. Mat. Univ. Parma (2), 5 (1964), 77-84.
[2] Jain, G.C. and Pethe, S., On a generalization of Bernstein and Szasz Mirakyan operators,  Nanta Mathematica, vol. X (2), 185-194.
[3] King, J.P., Probabilistic analysis of Korokvin’s theorem,  Journal of the Indian Math. Soc., 44(1980), 51-58.
[4] Khan, R.A., Some probabilistic methods in the theory of approximation operators,  Acta Mathematica Academiae Scientiarum Hungaricae, 35 (1-2), 1980, 193-203.
[5] Korokvin, P.P., Linear operators and approximation theory,  Hindustan Publ. Corp., Delhi, 1960.
[6] Muller, M., Die folge der Gammaoperatoren,  Dissenation, Stuttgart, 1967.
[7] Razi, Quasim, Approximation of a function by Kantorovich type operators,  Matematicki Vesnik, 41 (1989), 183-192.
[8] Stancu, D.D., Approximation of functions by a new class of linear poly operators,  Revue Doumaine de Math. Pures et Appl., 13 (1968), 1173-1194.
[9] Stancu, D.D., Use of probabilistic methods in the theory of uniform approximation of continuous functions, Revue Roumaine de Math Pures et Appl., 14(1969), 673-691.
[10] Stancu, D.D., Approximation of funcitons by means of a new heneralized Bernstein operator, Calcolo, vol. XX, fasc. II, 1983, 211-229.


Related Posts