On the Continued Fractions of J. Mikusiński

Abstract

Authors

Tiberiu Popoviciu
Institutul de Calcul

Keywords

?

Paper coordinates

T. Popoviciu, Sur les fractions continues de J. Mikusinski, Rev. Roumaine Math. Pures Appl., 13, 1968, pp. 79-83 (in French)

PDF

About this paper

Journal

Revue Roumaine de Mathématiques Pures et Appliquées

Publisher Name

published by the Publishing House of the Romanian Academy

DOI

 

Print ISSN

 

Online ISSN

 

[/vc_column]

Paper (preprint) in HTML form

1968 a -Popoviciu- Rev. Roum. Math. Pures Appl. - On the continued fractions of J. Mikusinski
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

ON THE CONTINUOUS FRACTIONS OF J. MIKUSINSKI

BY

TIBERIU POPOVICIU
(Cluj)

We give a new proof of the sufficiency of condition (3) of theorem 1 of J. Mikusinski [2]. We also give some other properties of arithmetic continued fractions of the form [ has , b ˙ , 2 has ] [ has , b ˙ , 2 has ] [a,b^(˙),2a][a, \dot{b}, 2 a][has,b˙,2has].
  1. Either c c ccca natural number > 1 > 1 > 1>1>1, different from a square, ( r n ) n = 0 r n n = 0 (r_(n))_(n=0)^(oo)\left(r_{n}\right)_{n=0}^{\infty}(rn)n=0the continuation of the reductions of the development of c c sqrtc\sqrt{c}cin arithmetic continued fraction and ( x n ) n = 0 x n n = 0 (x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}(xn)n=0the sequence of approximations of c c sqrtc\sqrt{c}cgiven by the recurrence relation
(1) x n + 1 = 1 2 ( x n + c x n ) , n = 0 , 1 , , x 0 = [ V c ¯ ] (1) x n + 1 = 1 2 x n + c x n , n = 0 , 1 , , x 0 = [ V c ¯ ] {:(1)x_(n+1)=(1)/(2)(x_(n)+(c)/(x_(n)))","n=0","1","dots","x_(0)=[V bar(c)]:}\begin{equation*} x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{c}{x_{n}}\right), n=0.1, \ldots, x_{0}=[V \bar{c}] \tag{1} \end{equation*}(1)xn+1=12(xn+cxn),n=0,1,,x0=[Vc¯]
J. Mikusinski proved [2] the following theorem
Theorem 1. So that we have
(2)
x n = r 2 n 1 , n = 0 , 1 , x n = r 2 n 1 , n = 0 , 1 , x_(n)=r_(2^(n)-1),n=0,1,dotsx_{n}=r_{2^{n}-1}, n=0,1, \ldotsxn=r2n1,n=0,1,
it is necessary and sufficient that the number c be of the form
(3) c = a 2 + 2 a b (3) c = a 2 + 2 a b {:(3)c=a^(2)+(2a)/(b):}\begin{equation*} c=a^{2}+\frac{2 a}{b} \tag{3} \end{equation*}(3)c=has2+2hasb
where a and b b bbbare natural numbers.
J. Mikusinski demonstrated very simply the necessity of the condition and also demonstrated the sufficiency of the condition by noting that then the continued fraction of c c sqrtc\sqrt{c}cis of the form [ a , b ˙ , 2 ˙ a ] [ a , b ˙ , 2 ˙ a ] [a,b^(˙),2^(˙)a][a, \dot{b}, \dot{2} a][has,b˙,2˙has]. In the following we will first give a slightly different demonstration of the sufficiency of condition (3).
Natural numbers c c cccof the form (3) are characterized by the property that if a = [ c ] a = [ c ] a=[sqrtc]a=[\sqrt{c}]has=[c], the number 2 a 2 a 2a2 a2hasis divisible by c a 2 c a 2 c-a^(2)c-a^{2}chas2.
REV. ROUM. MATH. PURES ET APPL., VOLUME XIII, NO. 1, p. 79-83, BUCHAREST, 1968
2. Let us denote by r n = P n Q n , n = 0 , 1 , r n = P n Q n , n = 0 , 1 , r_(n)=(P_(n))/(Q_(n)),n=0,1,dotsr_{n}=\frac{P_{n}}{Q_{n}}, n=0,1, \ldotsrn=PnQn,n=0,1,, the reductions of the periodic arithmetic continued fraction [ a , b ˙ , 2 ˙ a ] [ a , b ˙ , 2 ˙ a ] [a,b^(˙),2^(˙)a][a, \dot{b}, \dot{2} a][has,b˙,2˙has]. The sequels ( P n ) , ( Q n ) P n , Q n (P_(n)),(Q_(n))\left(P_{n}\right),\left(Q_{n}\right)(Pn),(Qn)are solutions ( u n ) n = 0 u n n = 0 (u_(n))_(n=0)^(oo)\left(u_{n}\right)_{n=0}^{\infty}(un)n=0of the system of recurrent equations
(4) { u 2 n = 2 a u 2 n 1 + u 2 n 2 u 2 n + 1 = b u 2 n + u 2 n 1 n = 1 , 2 , (4) u 2 n = 2 a u 2 n 1 + u 2 n 2 u 2 n + 1 = b u 2 n + u 2 n 1 n = 1 , 2 , {:(4){[u_(2n)=2au_(2n-1)+u_(2n-2)],[u_(2n+1)=bu_(2n)+u_(2n-1)]quad n=1,2,dots:}:}\left\{\begin{array}{l} u_{2 n}=2 a u_{2 n-1}+u_{2 n-2} \tag{4}\\ u_{2 n+1}=b u_{2 n}+u_{2 n-1} \end{array} \quad n=1,2, \ldots\right.(4){u2n=2hasu2n1+u2n2u2n+1=bu2n+u2n1n=1,2,
with the initial values ​​respectively P 0 = a , P 1 = a b + 1 ; Q 0 = 1 P 0 = a , P 1 = a b + 1 ; Q 0 = 1 P_(0)=a,P_(1)=ab+1;Q_(0)=1P_{0}=a, P_{1}=a b+1 ; Q_{0}=1P0=has,P1=hasb+1;Q0=1, Q 1 = b Q 1 = b Q_(1)=bQ_{1}=bQ1=b.
But if ( u n ) n = 0 u n n = 0 (u_(n))_(n=0)^(oo)\left(u_{n}\right)_{n=0}^{\infty}(un)n=0is a solution of the system (4), the partial sequences ( u 2 n ) n = 0 , ( u 2 n + 1 ) n = 0 u 2 n n = 0 , u 2 n + 1 n = 0 (u_(2n))_(n=0)^(oo),(u_(2n+1))_(n=0)^(oo)\left(u_{2 n}\right)_{n=0}^{\infty},\left(u_{2 n+1}\right)_{n=0}^{\infty}(u2n)n=0,(u2n+1)n=0are solutions ( v n v n v_(n)v_{n}vn) of the recurrence equation
(5) v n = ( 2 a b + 2 ) v n 1 v n 2 , n = 2 , 3 , (5) v n = ( 2 a b + 2 ) v n 1 v n 2 , n = 2 , 3 , {:(5)v_(n)=(2ab+2)v_(n-1)-v_(n-2)","n=2","3","dots:}\begin{equation*} v_{n}=(2 a b+2) v_{n-1}-v_{n-2}, n=2,3, \ldots \tag{5} \end{equation*}(5)vn=(2hasb+2)vn1vn2,n=2,3,
According to the well-known theory of equations of this form we have v n = A x n + B y n , n = 0 , 1 , v n = A x n + B y n , n = 0 , 1 , v_(n)=Ax^(n)+By^(n),n=0,1,dotsv_{n}=A x^{n}+B y^{n}, n=0,1, \ldotsvn=HASxn+Byn,n=0,1,, Or x , y x , y x,yx, yx,yare the roots of the characteristic equation z 2 ( 2 a b + 2 ) z + 1 = 0 z 2 ( 2 a b + 2 ) z + 1 = 0 z^(2)-(2ab+2)z+1=0z^{2}-(2 a b+2) z+1=0z2(2hasb+2)z+1=0And A , B A , B A,BA, BHAS,Bare independent of n n nnn.
If we take into account (3) we have
x = a b + 1 + b c = b 2 a ξ 2 , y = a b + 1 b c = b 2 a η 2 x = a b + 1 + b c = b 2 a ξ 2 , y = a b + 1 b c = b 2 a η 2 x=ab+1+bsqrtc=(b)/(2a)xi^(2),y=ab+1-bsqrtc=(b)/(2a)eta^(2)x=a b+1+b \sqrt{c}=\frac{b}{2 a} \xi^{2}, y=a b+1-b \sqrt{c}=\frac{b}{2 a} \eta^{2}x=hasb+1+bc=b2hasξ2,y=hasb+1bc=b2hasη2
Or ξ = a + c , η = a c ξ = a + c , η = a c xi=a+sqrtc,eta=a-sqrtc\xi=a+\sqrt{c}, \eta=a-\sqrt{c}ξ=has+c,η=hasc. So we have
(6) v n = ( b 2 a ) n ( A ξ 2 n + B η 2 n ) , n = 0 , 1 , (6) v n = b 2 a n A ξ 2 n + B η 2 n , n = 0 , 1 , {:(6)v_(n)=((b)/(2a))^(n)(Axi^(2n)+Beta^(2n))","n=0","1","dots:}\begin{equation*} v_{n}=\left(\frac{b}{2 a}\right)^{n}\left(A \xi^{2 n}+B \eta^{2 n}\right), n=0,1, \ldots \tag{6} \end{equation*}(6)vn=(b2has)n(HASξ2n+Bη2n),n=0,1,
To get the suites ( P n ) , ( Q n ) P n , Q n (P_(n)),(Q_(n))\left(P_{n}\right),\left(Q_{n}\right)(Pn),(Qn)we determine the partial sequences ( P 2 n ) n = 0 , ( P 2 n + 1 ) n = 0 , ( Q 2 n ) n = 0 , ( Q 2 n + 1 ) n = 0 P 2 n n = 0 , P 2 n + 1 n = 0 , Q 2 n n = 0 , Q 2 n + 1 n = 0 (P_(2n))_(n=0)^(oo),(P_(2n+1))_(n=0)^(oo),(Q_(2n))_(n=0)^(oo),(Q_(2n+1))_(n=0)^(oo)\left(P_{2 n}\right)_{n=0}^{\infty},\left(P_{2 n+1}\right)_{n=0}^{\infty},\left(Q_{2 n}\right)_{n=0}^{\infty},\left(Q_{2 n+1}\right)_{n=0}^{\infty}(P2n)n=0,(P2n+1)n=0,(Q2n)n=0,(Q2n+1)n=0, using formulas (6), taking into account the initial values ​​respectively P 0 = a , P 2 = 2 a 2 b + 3 a P 0 = a , P 2 = 2 a 2 b + 3 a P_(0)=a,P_(2)=2a^(2)b+3aP_{0}=a, P_{2}=2 a^{2} b+3 aP0=has,P2=2has2b+3has; P 1 = a b + 1 , P 3 = 2 a 2 b 2 + 4 a b + 1 ; Q 0 = 1 , Q 2 = 2 a b + 1 ; Q 1 = b P 1 = a b + 1 , P 3 = 2 a 2 b 2 + 4 a b + 1 ; Q 0 = 1 , Q 2 = 2 a b + 1 ; Q 1 = b P_(1)=ab+1,P_(3)=2a^(2)b^(2)+4ab+1;Q_(0)=1,Q_(2)=2ab+1;Q_(1)=bP_{1}=a b+1, P_{3}=2 a^{2} b^{2}+4 a b+1 ; Q_{0}=1, Q_{2}=2 a b+1 ; Q_{1}=bP1=hasb+1,P3=2has2b2+4hasb+1;Q0=1,Q2=2hasb+1;Q1=b, Q 3 = 2 a b 2 + 2 b Q 3 = 2 a b 2 + 2 b Q_(3)=2ab^(2)+2bQ_{3}=2 a b^{2}+2 bQ3=2hasb2+2b. In each of these cases these initial values ​​determine the coefficients A , B A , B A,BA, BHAS,Bcorrespondents.
By doing the calculations, we find thus
(7) { P n = 1 2 ( b 2 a ) [ n + 1 2 ] ( ξ n + 1 + η n + 1 ) Q n = 1 2 c ( b 2 a ) [ n + 1 2 ] ( ξ n + 1 η n + 1 ) n = 0 , 1 , (7) P n = 1 2 b 2 a n + 1 2 ξ n + 1 + η n + 1 Q n = 1 2 c b 2 a n + 1 2 ξ n + 1 η n + 1 n = 0 , 1 , {:(7){[P_(n)=(1)/(2)((b)/(2a))^([(n+1)/(2)])(xi^(n+1)+eta^(n+1))],[Q_(n)=(1)/(2sqrtc)((b)/(2a))^([(n+1)/(2)])(xi^(n+1)-eta^(n+1))]quad n=0,1,dots:}:}\left\{\begin{array}{l} P_{n}=\frac{1}{2}\left(\frac{b}{2 a}\right)^{\left[\frac{n+1}{2}\right]}\left(\xi^{n+1}+\eta^{n+1}\right) \tag{7}\\ Q_{n}=\frac{1}{2 \sqrt{c}}\left(\frac{b}{2 a}\right)^{\left[\frac{n+1}{2}\right]}\left(\xi^{n+1}-\eta^{n+1}\right) \end{array} \quad n=0,1, \ldots\right.(7){Pn=12(b2has)[n+12](ξn+1+ηn+1)Qn=12c(b2has)[n+12](ξn+1ηn+1)n=0,1,
It is clear that these formulas are valid in general if a , b , c a , b , c a,b,ca, b, chas,b,care non-zero numbers such that c b = a 2 b + 2 a c b = a 2 b + 2 a cb=a^(2)b+2ac b=a^{2} b+2 acb=has2b+2has.
The reduction of a system of the form (4) to an equation of the type (5) was made by Th. Angheluță [1].
3. Returning to our problem, consider the recurrence relation (1). We have
x n c x n + c = ( x n 1 c x n 1 + c ) 2 , n = 1 , 2 , , x 0 = a x n c x n + c = x n 1 c x n 1 + c 2 , n = 1 , 2 , , x 0 = a (x_(n)-sqrtc)/(x_(n)+sqrtc)=((x_(n-1)-sqrtc)/(x_(n-1)+sqrtc))^(2),n=1,2,dots,x_(0)=a\frac{x_{n}-\sqrt{c}}{x_{n}+\sqrt{c}}=\left(\frac{x_{n-1}-\sqrt{c}}{x_{n-1}+\sqrt{c}}\right)^{2}, n=1,2, \ldots, x_{0}=axncxn+c=(xn1cxn1+c)2,n=1,2,,x0=has
from which it follows that
(8) x n c x n + c = ( η ξ ) 2 n , n = 0 , 1 , (8) x n c x n + c = η ξ 2 n , n = 0 , 1 , {:(8)(x_(n)-sqrtc)/(x_(n)+sqrtc)=((eta )/(xi))^(2^(n))","n=0","1","dots:}\begin{equation*} \frac{x_{n}-\sqrt{c}}{x_{n}+\sqrt{c}}=\left(\frac{\eta}{\xi}\right)^{2^{n}}, n=0,1, \ldots \tag{8} \end{equation*}(8)xncxn+c=(ηξ)2n,n=0,1,
where well
(9) x n = c ξ 2 n + η 2 n ξ 2 n η 2 n , n = 0 , 1 , (9) x n = c ξ 2 n + η 2 n ξ 2 n η 2 n , n = 0 , 1 , {:(9)x_(n)=sqrtc(xi^(2^(n))+eta^(2^(n)))/(xi^(2^(n))-eta^(2^(n)))","n=0","1","dots:}\begin{equation*} x_{n}=\sqrt{c} \frac{\xi^{2^{n}}+\eta^{2^{n}}}{\xi^{2^{n}}-\eta^{2^{n}}}, n=0,1, \ldots \tag{9} \end{equation*}(9)xn=cξ2n+η2nξ2nη2n,n=0,1,
But, from (7) it follows that
r n = c ξ n + 1 + η n + 1 ξ n + 1 η n + 1 , n = 0 , 1 , r n = c ξ n + 1 + η n + 1 ξ n + 1 η n + 1 , n = 0 , 1 , r_(n)=sqrtc(xi^(n+1)+eta^(n+1))/(xi^(n+1)-eta^(n+1)),n=0,1,dotsr_{n}=\sqrt{c} \frac{\xi^{n+1}+\eta^{n+1}}{\xi^{n+1}-\eta^{n+1}}, n=0,1, \ldotsrn=cξn+1+ηn+1ξn+1ηn+1,n=0,1,
from which equality (2) follows immediately.
4. Noting that | η | < ξ | η | < ξ |eta| < xi|\eta|<\xi|η|<ξ, formula (8) shows us that the sequence ( x n x n x_(n)x_{n}xn) converges to c c sqrtc\sqrt{c}c. But we can approximate c c sqrtc\sqrt{c}cby other iterative sequences. Such a sequence ( y n ) n = 0 y n n = 0 (y_(n))_(n=0)^(oo)\left(y_{n}\right)_{n=0}^{\infty}(yn)n=0is determined by the recurrence relation
(10) y n + 1 = α y n + c y n + α , n = 0 , 1 , (10) y n + 1 = α y n + c y n + α , n = 0 , 1 , {:(10)y_(n+1)=(alphay_(n)+c)/(y_(n)+alpha)","n=0","1","dots:}\begin{equation*} y_{n+1}=\frac{\alpha y_{n}+c}{y_{n}+\alpha}, n=0,1, \ldots \tag{10} \end{equation*}(10)yn+1=αyn+cyn+α,n=0,1,
where we assume that y 0 > 0 y 0 > 0 y_(0) > 0y_{0}>0y0>0and that α α alpha\alphaαis a positive rational number. By limiting ourselves only to rational approximations of c c sqrtc\sqrt{c}c, the case of α α alpha\alphaαpositive and irrational is of no interest.
All terms of the sequence ( y n y n y_(n)y_{n}yn) are positive and we have
y n + 1 c y n + 1 + c = α c α + c y n c y n + c , n = 0 , 1 , y n + 1 c y n + 1 + c = α c α + c y n c y n + c , n = 0 , 1 , (y_(n+1)-sqrtc)/(y_(n+1)+sqrtc)=(alpha-sqrtc)/(alpha+sqrtc)*(y_(n)-sqrtc)/(y_(n)+sqrtc),n=0,1,dots\frac{y_{n+1}-\sqrt{c}}{y_{n+1}+\sqrt{c}}=\frac{\alpha-\sqrt{c}}{\alpha+\sqrt{c}} \cdot \frac{y_{n}-\sqrt{c}}{y_{n}+\sqrt{c}}, n=0,1, \ldotsyn+1cyn+1+c=αcα+cyncyn+c,n=0,1,
from where
(11) y n c y n + c = ( α c α + c ) n y 0 c y 0 + c , n = 0 , 1 , (11) y n c y n + c = α c α + c n y 0 c y 0 + c , n = 0 , 1 , {:(11)(y_(n)-sqrtc)/(y_(n)+sqrtc)=((alpha-sqrtc)/(alpha+sqrtc))^(n)*(y_(0)-sqrtc)/(y_(0)+sqrtc)","n=0","1","dots:}\begin{equation*} \frac{y_{n}-\sqrt{c}}{y_{n}+\sqrt{c}}=\left(\frac{\alpha-\sqrt{c}}{\alpha+\sqrt{c}}\right)^{n} \cdot \frac{y_{0}-\sqrt{c}}{y_{0}+\sqrt{c}}, n=0,1, \ldots \tag{11} \end{equation*}(11)yncyn+c=(αcα+c)ny0cy0+c,n=0,1,
and, since | α c α + c | < 1 α c α + c < 1 |(alpha-sqrtc)/(alpha+sqrtc)| < 1\left|\frac{\alpha-\sqrt{c}}{\alpha+\sqrt{c}}\right|<1|αcα+c|<1, it follows that the sequence ( y n y n y_(n)y_{n}yn) converges to c c sqrtc\sqrt{c}c.
The convergence of the sequence ( x n x n x_(n)x_{n}xn) towards c c sqrtc\sqrt{c}cis of order 2 while that of the sequence ( y n ) y n (y_(n))\left(y_{n}\right)(yn)only of order 1.
Let's suppose that α = y 0 = [ o ¯ ] = a α = y 0 = [ o ¯ ] = a alpha=y_(0)=[sqrt() bar(o)]=a\alpha=y_{0}=[\sqrt{ } \bar{o}]=aα=y0=[o¯]=has, then from (11) it follows that
y n = c ξ n + 1 + η n + 1 ξ n + 1 η n + 1 , n = 0 , 1 , y n = c ξ n + 1 + η n + 1 ξ n + 1 η n + 1 , n = 0 , 1 , y_(n)=sqrtc(xi^(n+1)+eta^(n+1))/(xi^(n+1)-eta^(n+1)),n=0,1,dotsy_{n}=\sqrt{c} \frac{\xi^{n+1}+\eta^{n+1}}{\xi^{n+1}-\eta^{n+1}}, n=0,1, \ldotsyn=cξn+1+ηn+1ξn+1ηn+1,n=0,1,
continuing to pose ξ = a + c , η = a c ξ = a + c , η = a c xi=a+sqrtc,eta=a-sqrtc\xi=a+\sqrt{c}, \eta=a-\sqrt{c}ξ=has+c,η=hasc.
This formula shows us that if the number c c cccis of the form (3) and if α = y 0 = a α = y 0 = a alpha=y_(0)=a\alpha=y_{0}=aα=y0=has, we have
(12)
y n = r n , n = 0 , 1 , y n = r n , n = 0 , 1 , y_(n)=r_(n),n=0,1,dotsy_{n}=r_{n}, n=0,1, \ldotsyn=rn,n=0,1,
so that the recurrence relation (10), with the initial condition y 0 = [ c ] y 0 = [ c ] y_(0)=[sqrtc]y_{0}=[\sqrt{c}]y0=[c], gives us precisely the sequence of reductions of the arithmetic continued fraction of c c sqrtc\sqrt{c}c.
5. Let us now propose to determine the natural number c c ccc(non-square) and the rational number (positive) α α alpha\alphaαso that the recurrence relation (10) gives precisely the sequence of reductions ( r n ) n = 0 r n n = 0 (r_(n))_(n=0)^(oo)\left(r_{n}\right)_{n=0}^{\infty}(rn)n=0of the arithmetic continued fraction of V c ¯ V c ¯ V bar(c)V \bar{c}Vc¯.
For this we designate by a = [ c ] a = [ c ] a=[sqrtc]a=[\sqrt{c}]has=[c]and let's ask c = a 2 + k c = a 2 + k c=a^(2)+kc=a^{2}+kc=has2+k. If [ a , b , d , e , ] [ a , b , d , e , ] [a,b,d,e,dots][a, b, d, e, \ldots][has,b,d,e,]is the arithmetic continued fraction of c c sqrtc\sqrt{c}cAnd r 0 , r 1 , r 2 , r 3 , r 0 , r 1 , r 2 , r 3 , r_(0),r_(1),r_(2),r_(3),dotsr_{0}, r_{1}, r_{2}, r_{3}, \ldotsr0,r1,r2,r3,, are its successive reductions, of
r 1 = a b + 1 b = a + 1 b = α a + a 2 + k a + α r 1 = a b + 1 b = a + 1 b = α a + a 2 + k a + α r_(1)=(ab+1)/(b)=a+(1)/(b)=(alpha a+a^(2)+k)/(a+alpha)r_{1}=\frac{a b+1}{b}=a+\frac{1}{b}=\frac{\alpha a+a^{2}+k}{a+\alpha}r1=hasb+1b=has+1b=αhas+has2+khas+α
it results
(13)
b = a + α k b = a + α k b=(a+alpha)/(k)b=\frac{a+\alpha}{k}b=has+αk
Of
r 2 = a b d + a + d b d + 1 = a + 1 b + 1 d = α ( a b + 1 ) + b ( a 2 + k ) a b + 1 + α b r 2 = a b d + a + d b d + 1 = a + 1 b + 1 d = α ( a b + 1 ) + b a 2 + k a b + 1 + α b r_(2)=(abd+a+d)/(bd+1)=a+(1)/(b+(1)/(d))=(alpha(ab+1)+b(a^(2)+k))/(ab+1+alpha b)r_{2}=\frac{a b d+a+d}{b d+1}=a+\frac{1}{b+\frac{1}{d}}=\frac{\alpha(a b+1)+b\left(a^{2}+k\right)}{a b+1+\alpha b}r2=hasbd+has+dbd+1=has+1b+1d=α(hasb+1)+b(has2+k)hasb+1+αb
it results
(14)
d = α a + k b 2 a b + 1 k b 2 d = α a + k b 2 a b + 1 k b 2 d=(alpha-a+kb)/(2ab+1-kb^(2))d=\frac{\alpha-a+k b}{2 a b+1-k b^{2}}d=αhas+kb2hasb+1kb2
At the end of
v 3 = a + 1 b + 1 d + 1 e = a ( a b d + a + d ) + ( b d + 1 ) ( a 2 + k ) a b d + a + d + α ( b d + 1 ) v 3 = a + 1 b + 1 d + 1 e = a ( a b d + a + d ) + ( b d + 1 ) a 2 + k a b d + a + d + α ( b d + 1 ) v_(3)=a+(1)/(b+(1)/(d+(1)/(e)))=(a(abd+a+d)+(bd+1)(a^(2)+k))/(abd+a+d+alpha(bd+1))v_{3}=a+\frac{1}{b+\frac{1}{d+\frac{1}{e}}}=\frac{a(a b d+a+d)+(b d+1)\left(a^{2}+k\right)}{a b d+a+d+\alpha(b d+1)}v3=has+1b+1d+1e=has(hasbd+has+d)+(bd+1)(has2+k)hasbd+has+d+α(bd+1)
taking into account (13) and (14), we deduce
(15) e = 2 α k (15) e = 2 α k {:(15)e=(2alpha)/(k):}\begin{equation*} e=\frac{2 \alpha}{k} \tag{15} \end{equation*}(15)e=2αk
But the numbers b , e b , e b,eb, eb,eare integers (positive), it therefore follows that 2 b e = 2 a k 2 b e = 2 a k 2b-e=(2a)/(k)2 b-e=\frac{2 a}{k}2be=2haskis also whole. It follows that 2 a 2 a 2a2 a2hasis divisible by k k kkk, so that the number c c cccis of the form (3). In this case e = b e = b e=be=be=b, SO α = a α = a alpha=a\alpha=aα=has.
So we have the property expressed by
Theorem 2. For the y n , n = 0 , 1 , y n , n = 0 , 1 , y_(n),n=0,1,dotsy_{n}, n=0,1, \ldotsyn,n=0,1,, given by the recurrence relation (10), where c is a natural number (not square) and a is a positive rational number, are the successive reductions of the arithmetic continued fraction of c c sqrtc\sqrt{c}c, it is necessary and sufficient that it be of the form (3) and that α = [ c ] = a α = [ c ] = a alpha=[sqrtc]=a\alpha=[\sqrt{c}]=aα=[c]=has.
6. Note that if c c cccis any positive number and if we have (1), with x 0 > 0 x 0 > 0 x_(0) > 0x_{0}>0x0>0, it results
x n c x n + c = ( x 0 c x 0 + c ) 2 n , n = 0 , 1 , x n c x n + c = x 0 c x 0 + c 2 n , n = 0 , 1 , (x_(n)-sqrtc)/(x_(n)+sqrtc)=((x_(0)-sqrtc)/(x_(0)+sqrtc))^(2^(n)),n=0,1,dots\frac{x_{n}-\sqrt{c}}{x_{n}+\sqrt{c}}=\left(\frac{x_{0}-\sqrt{c}}{x_{0}+\sqrt{c}}\right)^{2^{n}}, n=0,1, \ldotsxncxn+c=(x0cx0+c)2n,n=0,1,
Taking into account also formula (11), we see that we can state the
Theorem 3. If e and a are positive numbers and if the sequences ( x n ) n = 0 x n n = 0 (x_(n))_(n=0)^(oo)\left(x_{n}\right)_{n=0}^{\infty}(xn)n=0, ( y n ) n = 0 y n n = 0 (y_(n))_(n=0)^(oo)\left(y_{n}\right)_{n=0}^{\infty}(yn)n=0are given by the recurrence relations (1), (10), with the initial values x 0 = y 0 = α x 0 = y 0 = α x_(0)=y_(0)=alphax_{0}=y_{0}=\alphax0=y0=α:
1 1 1^(@)1^{\circ}1They converge towards c c sqrtc\sqrt{c}c.
2 2 2^(@)2^{\circ}2We have x n = y 2 n 1 , n = 0 , 1 , x n = y 2 n 1 , n = 0 , 1 , x_(n)=y_(2^(n)-1),n=0,1,dotsx_{n}=y_{2^{n}-1}, n=0,1, \ldotsxn=y2n1,n=0,1,
Received on May 3, 1967
Institute of Calculation
Academy of the Socialist Republic of Romania, Cluj Branch

BIBLIOGRAPHY

  1. Angheluță, Th. Integration of a class of linear equations with finite differences. Bulletin of the Soc. of Sciences of Cluj, Vol. III (1926), 94-104.
  2. Mikusinski, J. On Newton's method of approximation. Annales Polon. Math., I (1954), 184-194.

google scholar link

1968

Related Posts