T. Popoviciu, Asupra delimitării restului în unele formule de aproximare liniară ale analizei, Stud. Cerc. Mat. (Cluj), 11 (1960) no. 2, pp. 357-362 (in Romanian)
1960 a1-Popoviciu- Stud. Cerc. Mat. (Cluj) - On the delimitation of the remainder in some approximation formulas
Original text
Rate this translation
Your feedback will be used to help improve Google Translate
ON THE DELIMITATION OF THE REMAINDER IN SOME LINEAR APPROXIMATION FORMULAS OF ANALYSIS*)
OFTIBERIU POPOVICIUCorresponding member of the RPR Academy(Cluj)
Let's assume that the restR[f]R[f]of a linear approximation formula is a linear functional defined on a vector spaceSS, formed by functionsf=f(x)f=f(x), defined and continuous on an intervalandandFunctionsffand the linear functionalR[f]R[f]are real andSScontains all polynomials.
We say thatR[f]R[f]is of simple form, if there exists an integern >= -1n \geqq-1, so that equality occurs
{:(1)R[f]=K[xi_(1),xi_(2),dots,xi_(n+2);f]","quad f in S",":}\begin{equation*} R[f]=K\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n+2} ; f\right], \quad f \in S, \tag{1} \end{equation*}
whereK=R[x^(n+1)]K=R\left[x^{n+1}\right]is!=0\neq 0, independent of functionff, andxi_(i)\xi_{i},i=1,2,dots,n+2i=1,2, \ldots, n+2SYNTHESISn+2n+2distinct points of the intervalandand(which may generally depend on the functionffand which are located inside the interval, ifn >= 0n \geq 0). The notation[xi_(1),xi_(2),dots,xi_(n+2);f]\left[\xi_{1}, \xi_{2}, \ldots, \xi_{n+2} ; right]represents the divided difference of the functionffon the nodesxi_(1),xi_(2),dots,xi_(n+2)\xi_{1}, \xi_{2}, \ldots, \xi_{n+2}For these notions and for the few properties that will follow, we ask the reader to consult our previous works, in particular, our paper [3] in the previous volume of this journal.
In this case,nnrepresents the degree of accuracy of the remainder and enjoys the property (characteristic) thatR[f]R[f]is zero for any polynomial of degreenn, butR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0.
We recall that because the functionalR[f]R[f]having the degree of accuracynn, to be of simple form, it is necessary and sufficient thatR[f]!=0R[f] \neq 0for any functionffin S\in Sconvex of the ordernn(onandand). In this case it is also necessary thatR[f]R[f]to keep a constant sign for any convex function of ordernn. Noting that the functionx^(n+1)x^{n+1}is convex of ordernn, the previous condition can be written
Condition (2) for any functionf in Sf \in Sconvex of the ordernn, is therefore necessary and sufficient forR[f]R[f]to be of the simple form (1). We note that for this it is also necessary (but not sufficient) thatR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0and
Moreover, ifffadmits a derivative of ordern+1n+1(bordered) onandand, the number (5) is given by the equality
M=(1)/((n+1)!)su p_(x in I)|f^((n+1))(x)|M=\frac{1}{(n+1)!} \sup _{x \in I}\left|f^{(n+1)}(x)\right|
But the delimitation (4) is valid in a more general case. Namely, we will prove that:
Delimitation (4) is valid ifR[f]R[f]has the degree of accuracynnand if inequality (3) is verified for any functionf in Sf \in Snon-concave of the ordernn.
weR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0and for demonstration we can assumeR[x^(n+1)] > 0R\left[x^{n+1}\right]>0. We then consider the linear functional (defined onSS)
wherex_(1),x_(2),dots,x_(n+2)x_{1}, x_{2}, \ldots, x_{n+2}SYNTHESISn+2n+2distinct fixed points (independent of functionff) in the intervalandand, andepsilon\varepsilonis an arbitrary positive number. We will show thatR_(1)[f]R_{1}[f]is of simple form (1). Indeed, if we take into account the fact that the difference divided byn+2n+2nodes (not all confused) of a convex function of ordernnis, by definition, positive, we deduce thatR_(1)[f] > 0R_{1}[f]>0for any functionf in Sf \in Sconvex ordinalnn. The property of the demonetrah is treated. Taking into account (5) and (6) and also writing the corresponding delimitation (4) forR_(1)[f]R_{1}[f], we obtain
|R[f]| <= (R[x^(n+1)]+2epsi)M|R[f]| \leqq\left(R\left[x^{n+1}\right]+2 \varepsilon\right) M
This inequality being true whatever the positive number isepsilon\varepsilon, the delimitation (4) results and the property in question is proven. If we haveR[x^(n+1)] < 0R\left[x^{n+1}\right]<0, the proof is analogous. We then take in (6) forepsilon\varepsilonan arbitrary negative number.
3. To apply the previous property it is sufficient to know criteria that allow us to state that (in the hypothesisR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0) inequality (3) is verified for any functionf in Sf \in S, non-concave of the ordernnWe will
present here such a criterion that results from the remarkable property of SN Bernstein's approximation polynomials, to preserve the convexity character of functions [2].
We assume thatI=[0,1]I=[0,1]and that the functions of spaceSSadmit derivatives of the orderj( >= 0)j(\geq 0)contained on[0.1][0.1]We consider the linear functionalR[f]R[f], having the degree of accuracynnand which is bounded in the norm
In the hypotheses formulated previously, the following property occurs:
In order for inequality (3) to be verified for any functionf in Sf \in S, non-concave of the ordernn, it is (necessary and) sufficient for the inequality to holdR[x^(n+1)]*R[pi_(k),1] >= 0R\left[x^{n+1}\right] \cdot R\left[\pi_{k}, 1\right] \geqq 0, whatever they are negative integerskkanditit.
We note thatpi_(k,i)^((n+1))=x^(k)(1-x)^(l)\pi_{k, i}^{(n+1)}=x^{k}(1-x)^{l}If
wherebeta_(m)\beta_{m}is a polynomial of degreenn
As SN Bernstein [1] and S. Wigert [5] have shown, if the derivativef^((i))f^{(i)}of orderi( >= 0)i(\geqq 0)of the functionffexists and is continuous on[0,1][0,1], the string{B_(m)^((i))}\left\{B_{m}^{(i)}\right\}tend tom rarr oom \rightarrow \infty, evenly on[0,1][0,1]byf^((i))f^{(i)}It follows from this thatR[B_(m)]rarr R[f]R\left[B_{m}\right] \rightarrow R[f]form rarr oom \rightarrow \inftyand therefore
and that the differences divided byn+2n+2nodes of a non-concave function of ordernnare nonnegative, it follows thatR[x^(n+1)]*R[B_(n)] >= 0R\left[x^{n+1}\right] \cdot R\left[B_{n}\right] \geqq 0for any non-concave function of ordernn. Taking into account ( 9 ), the property in question results.
4. To give an application, eitherR[f]R[f]remainder in the numerical quadrature formula
whereffadmits a derivative of order 3, continues on[0,1][0,1]
In this case the functionalR[f]R[f]has the degree of accuracyn=5n=5and is bounded with respect to the norm ( 7 ), forj=3j=3, We have
tau_(k,l)=(1)/(5!)int_(x)^((1)/(l))(t-x)^(5)t^(k)(1-t)^(l)dt\tau_{k, l}=\frac{1}{5!} \int_{x}^{\frac{1}{l}}(t-x)^{5} t^{k}(1-t)^{l} d t
deduce
R[x^(6)]=(1)/(105) > 0,quadint_(0)^(1)pi_(k,l)dx=(1)/(6)int_(0)^(1)t^(6+k)(1-t)^(l)dtR\left[x^{6}\right]=\frac{1}{105}>0, \quad \int_{0}^{1} \pi_{k, l} d x=\frac{1}{6} \int_{0}^{1} t^{6+k}(1-t)^{l} d t
and a simple calculation gives us
R[pi_(k,l)]=(1)/(6)int_(0)^(1)t^(k+2)(1-t)^(l+4)dt > 0R\left[\pi_{k, l}\right]=\frac{1}{6} \int_{0}^{1} t^{k+2}(1-t)^{l+4} d t>0
Therefore, in this case, the delimitation (4) can be applied and we have
ABOUT THE EVALUATION OF THE RESIDUAL MEMBER OF SOME LINEAR FORMULAS OF APPROXIMATE MATHEMATICAL ANALYSIS
KPATKOE CONTENTS
It is assumed that there is a remainderR[f]R[f]some linear approximation formula is a linear functional defined on a vector spaceSS, educated by fuctionsf=f(x)f=f(x), defined and continuous on the intervalII. Functionsffand functionalk[f]k[f]they are real, and spaceSS, contains all polynomials. Based on some previous results [3], the following property is proved in this paper:
Оты имело место оценка (4), где М дается формулой (5), работано очтыK[f]K[f]he had order of accuracynnи очные неравенство (3) was satisfied для люфой функцииf in Sf \in Snon-concave ordernn.
It is in order of functional accuracyK[f]K[f], the number is understoodnnwith that property, чтоR[f]R[f]equals zero for any polynomialnn-of the degree, butR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0.
In the continuation, there is an indication that gives the opportunity to learn (under the assumptionR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0) is satisfied if inequality (3) is satisfied for any functionf in Sf \in Snon-concave degreenn. This sign is based on the application of properties of the polynomial approximation С. N. Bernstein preserves the convexity character [2].
With this purpose, it is assumed thatI=[0,1]I=[0,1]и что элементы прострацияSShave derivative ordersj( >= 0)j(\geq 0)continuous on[0,1][0,1]. It is also assumed that the linear functionalR[f]R[f]limited relative to the norm (7). Under these assumptions, the property is proved:
Для того, что неравенство (3) was satisfiedf in Sf \in Snon-concave ordernn, (necessary and) sufficient to have inequalityR[x^(n+1)]*R[pi_(k,l)] >= 0R\left[x^{n+1}\right] \cdot R\left[\pi_{k, l}\right] \geq 0, какие ни были неотрицательные целе рядом к иll.
The above results are applied to limit the rest of the quadratic formulas (10).
SUR LA DÉLIMITATION DU RESTE DANS CERTAINES FORMULES D'APPROXIMATION LINÉAIRES DE L'ANALYSF,
SUMMARY
We assume that the restR[f]R[f]A linear approximation formula is a linear function defined on a vector spaceSS, formed by the functionsf=f(x)f=f(x), defined et continues sur un intervallell, The functionsffand the functionalR(f]R(f]are real, and spaceSScontains all the polynomials. Starting from some previous results [3], we demonstrate in the present work the following property:
Pour que la délimitation (4) ait lieu, oùMMest donné par (5), il suffit queR[f]R[f]has the degree of accuracynnet que l'inégalité (3) soit verified pour toule fonctionf in Sf \in S, non-concave ordernn.
Nous entendons here par degree d'exactitude d'une fonctionnelleR[f]R[f]a numbernnhaving the property thatR[f]R[f]est nul pour tout polynome de degreenn, cornR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0.
On donne ensuite un criterio qui permet de connaître si (dans 1'hypothèseR[x^(n+1)]!=0R\left[x^{n+1}\right] \neq 0) l'inégalité (3) is verified pour toute fonctionf in Sf \in S, non-concave ordernn. What criteria are based on the utilization of the property that SN Bernstein's approximation polynomials preserve the convexity characteristics of functions [2].
It is assumed to this end thatI=[0,1]I=[0,1]et que les éléments de l'espaceSShave derivatives of orderj( >= 0)j(\geq 0)keep dancing[0,1][0,1]. On suppose aussi que la fonctionnelle linearR[f]R[f]soit bornée par rapport à la norme (7). Dans cette hypothèse we demonstrate the following property:
Pour que l'inégalité (3) soit verificatie quelles que soit la fonotionf in Sf \in Snon-cencave d'ordre n, il est (nécessaire et) suffisant qu'ait lieu l'inégalitéR[x^(n+1)].R[pi_(k),l] >= 0R\left[x^{n+1}\right] . R\left[\pi_{k}, l\right] \geqq 0, quels que scient les entiers non-négatifskkandll.
Les résultats ci-dessus s'applique à la délimitation du reste de la formula de quadrature (10).
BIBLIOGRAPHY
SN Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Soob. Харьк. Math. Ob-va, series 2, 13, 1-2(1912).
T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur. Mathematica, 10, 49-54 (1934).
On the remainder in some linear approximation formulas of analysis. Studii si Cercetari de Matematica (Cluj), X, 2, 337-389 (1959).
Sur le reste dans certaines formulaes linéaires d'approximation de l'analyse. Mathematica, 1(24), 95-142 (1960).
S. Wigert, Sur l'approximation par polynomes des fonctions continues. Arkiv för Mat Astr., och Fysik, 22 B, No. 9, 1-4 (1932).
Received November 29, 1060.
*) This work is also published in French in the journal "Mathematica" vol. 2(25), issue 1.