On the differences of functions of a real variable

Abstract

Authors

Keywords

?

Paper coordinates

T. Popoviciu, Sur les diffèrences des fonctions d’une variable réelle, Comptes Rendus des séances de l’Académie des Sciences de Roumanie, 2 (1938) no. 2, pp. 112-114 (in Romanian).

PDF

About this paper

Journal

Comptes Rendus des séances de l’Académie des Sciences de Roumanie

Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

??

Paper (preprint) in HTML form

1938 f -Popoviciu- Reports of the Sessions of the Acad. Sci. Roum. - On the differences in the functions of a
Original text
Rate this translation
Your feedback will be used to help improve Google Translate

28. On the differences of functions of a real variable

by TIBERIU POPOVICIU

Presented by Miron Nicolesco, Mc. ASR

(Session of + June 1937).

  1. We consider real functions of the real variable x x xxx, defined and uniform in a finite and closed interval which can be assumed to be ( 0,1 ). Let us set, as usual,
Δ h n f ( x ) = i = o n ( I ) n i ( i i ) / ( x + i h ) , x + i h ( O , I ) . Δ h n f ( x ) = i = o n ( I ) n i ( i i ) / ( x + i h ) , x + i h ( O , I ) . Delta_(h)^(n)f(x)=sum_(i=o)^(n)(-I)^(ni)((i)/(i))//(x+ih),quad x+ih sub(O,I).\Delta_{h}^{n} f(x)=\sum_{i=o}^{n}(-\mathrm{I})^{ni}\binom{i}{i} /(x+ih), \quad x+ih \subset(\mathrm{O}, \mathrm{I}) .Δhnf(x)=i=on(I)ni(ii)/(x+ih),x+ih(O,I).
MA Marchaud demonstrated 1 1 ^(1){ }^{1}1) that if f ( x ) f ( x ) f(x)f(x)f(x)is bounded and if Δ h n f ( x ) Δ h n f ( x ) Delta_(h)^(n)f(x)\Delta_{h}^{n} f(x)Δhnf(x)tends uniformly to zero when h 0 h 0 h rarr0h \rightarrow 0h0, the function f ( x ) f ( x ) f(x)f(x)f(x)is continuous in (0,1).
We have the more precise property:
If f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)is bounded in a subinterval, however small it may be, and if Δ h n f ( x ) Δ h n f ( x ) Delta_(h)^(n)f(x)\Delta_{h}^{n} \mathrm{f}(\mathrm{x})Δhnf(x)tends uniformly to zero for h 0 h 0 hrarr0\mathrm{h} \rightarrow 0h0, the function f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)is continuous in (0,1).
It is enough to demonstrate that if f ( x ) f ( x ) f(x)f(x)f(x)is bounded in ( c ; I c ; I c;Ic ; \mathrm{I}c;I) it is also in ( 0 , 1 ) ( 0 , 1 ) (0.1)(0.1)(0,1). Either | f ( x ) | < M , x ( c , 1 ) | f ( x ) | < M , x ( c , 1 ) |f(x)| < M,x sub(c,1)|f(x)|<M, x \subset(c, 1)|f(x)|<M,x(c,1)And o < η < I c n 1 o < η < I c n 1 o < eta < (Ic)/(n-1)o<\eta<\frac{Ic}{n-1}o<η<Icn1such as | Δ h n f ( x ) | < M Δ h n f ( x ) < M |Delta_(h)^(n)f(x)| < M\left|\Delta_{h}^{n} f(x)\right|<\mathrm{M}|Δhnf(x)|<MFor | h | < η | h | < η |h| < eta|h|<\eta|h|<η. We have | f ( x ) | < 2 n M | f ( x ) | < 2 n M |f(x)| < 2^(n)M|f(x)|<2^{n} \mathrm{M}|f(x)|<2nMFor x c η x c η x >= c-etax \geqslant c-\etaxcη, from which we deduce that
| f ( x ) | < 2 n s M , x ( 0 , 1 ) , s > c η . | f ( x ) | < 2 n s M , x ( 0 , 1 ) , s > c η . |f(x)| < 2^(ns)M,quad x sub(0,1),quad s > (c)/( eta).|f(x)|<2^{ns} \mathrm{M}, \quad x \subset(0,1), \quad s>\frac{c}{\eta} .|f(x)|<2nsM,x(0,1),s>cη.
We will now demonstrate that MA Marchaud's theorem extends to measurable functions:
If f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)is measurable in ( O , I ) ( O , I ) (O,I)(\mathrm{O}, \mathrm{I})(O,I)and if Δ h n f ( x ) Δ h n f ( x ) Delta_(h)^(n)f(x)\Delta_{h}^{n} \mathrm{f}(\mathrm{x})Δhnf(x)tends uniformly to zero for h 0 h 0 hrarr0\mathrm{h} \rightarrow 0h0, the function f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)is continuous in ( 0 , I ) ( 0 , I ) (0,I)(0, \mathrm{I})(0,I).
Indeed, if f ( x ) f ( x ) f(x)f(x)f(x)is not bounded, nor is it bounded in the interval ( 0 , I 2 ) 0 , I 2 (0,(I)/(2))\left(0, \frac{I}{2}\right)(0,I2). Either 0 < η < I 2 n 0 < η < I 2 n 0 < eta < (I)/(2n)0<\eta<\frac{I}{2 n}0<η<I2nsuch as | Δ h n f ( x ) | < I Δ h n f ( x ) < I |Delta_(h)^(n)f(x)| < I\left|\Delta_{h}^{n} f(x)\right|<I|Δhnf(x)|<IFor | h | η | h | η |h| <= eta|h| \leqslant \eta|h|η. Given a number HAS > 0 HAS > 0 A > 0\mathrm{A}>0HAS>0, there is a ξ ( 0 , 1 2 ) ξ 0 , 1 2 xi sub(0,(1)/(2))\xi \subset\left(0, \frac{1}{2}\right)ξ(0,12)such as | f ( ξ ) | > I + ( 2 n I ) | f ( ξ ) | > I + 2 n I |f(xi)| > I+(2^(n)-I)|f(\xi)|>\mathrm{I}+\left(2^{n}-\mathrm{I}\right)|f(ξ)|>I+(2nI)A. But we have | Δ h n f ( ξ ) | < I Δ h n f ( ξ ) < I |Delta_(h)^(n)f(xi)| < I\left|\Delta_{h}^{n} f(\xi)\right|<\mathrm{I}|Δhnf(ξ)|<IFor n I h η < h < η n I h η < h < η (nI)/(h)eta < h < eta\frac{n-\mathrm{I}}{h} \eta<h<\etanIhη<h<η,
112
therefore | f ( ξ + i h ) | > | f ( ξ + i h ) | > |f(xi+ih)| >|f(\xi+ih)|>|f(ξ+ih)|>. A for at least one i , i i n i , i i n i,i <= i <= ni, i \leqslant i \leqslant ni,iin. We deduce that the set E | | f ( x ) | > HAS | | | f ( x ) | > HAS | ||f(x)| > A|||f(x)|>\mathrm{A}|||f(x)|>HAS|is measuring η n η n >= (eta )/(n)\geqslant \frac{\eta}{n}ηn. The number A being arbitrary, this is in contradiction with a theorem of ME B ore 1 on measurable functions. The stated property results from this. The case of the equation Δ h n f ( x ) = O Δ h n f ( x ) = O Delta_(h)^(n)f(x)=O\Delta_{h}^{n} f(x)=\mathrm{O}Δhnf(x)=Owas studied by MW Sierpinski ( n = 2 ) 1 ) ( n = 2 ) 1 {:(n=2)^(1))\left.(n=2)^{1}\right)(n=2)1)and by ourselves ( n > 2 ) 3 ) ( n > 2 ) 3 {:(n > 2)^(3))\left.(n>2)^{3}\right)(n>2)3).
2. Consider the more general expression 3 3 ^(3){ }^{3}3).
(1)
Δ h ( n ) f ( x ) = i = o n has i f ( x + i h ) Δ h ( n ) f ( x ) = i = o n has i f ( x + i h ) Delta_(h)^((n))f(x)=sum_(i=o)^(n)a_(i)f(x+ih)\Delta_{h}^{(n)} f(x)=\sum_{i=o}^{n} a_{i} f(x+ih)Δh(n)f(x)=i=onhasif(x+ih)
THE has i has i a_(i)a_{i}hasibeing given constants. This expression is of order k if i = o n has i i I = 0 , I = 0 , I , , k I , i = o n has i i k 0 i = o n has i i I = 0 , I = 0 , I , , k I , i = o n has i i k 0 sum_(i=o)^(n)a_(i)i^(j)=0,j=0,I,dots,kI,sum_(i=o)^(n)a_(i)i^(k)!=0\sum_{i=o}^{n} a_{i} i^{j}=0, j=0, \mathrm{I}, \ldots, k-\mathrm{I}, \sum_{i=o}^{n} a_{i} i^{k} \neq 0i=onhasiiI=0,I=0,I,,kI,i=onhasiik0, so if the polynomial F ( x ) = i = o n has i x i F ( x ) = i = o n has i x i F(x)=sum_(i=o)^(n)a_(i)x^(i)\mathrm{F}(x)=\sum_{i=o}^{n} a_{i} x^{i}F(x)=i=onhasixihas the root I of order k k kkkof multiplicity. In this case we can determine a positive integer p p pppand two polynomials φ ( x ) , ψ ( x ) φ ( x ) , ψ ( x ) varphi(x),psi(x)\varphi(x), \psi(x)φ(x),ψ(x), so that we have 4 4 ^(4){ }^{4}4) :
φ ( x ) F ( x ) + ψ ( λ ) F ( x P ) ( I λ P ) k . φ ( x ) F ( x ) + ψ ( λ ) F x P I λ P k . varphi(x)F(x)+psi(lambda)F(x^(P))-=(I-lambda^(P))^(k).\varphi(x) \mathrm{F}(x)+\psi(\lambda) \mathrm{F}\left(x^{\mathrm{P}}\right) \equiv\left(\mathrm{I}-\lambda^{\mathrm{P}}\right)^{k} .φ(x)F(x)+ψ(λ)F(xP)(IλP)k.
It follows that we have a relation of the form
(2) Δ p h k f ( x ) = i = o p n h i α i Δ h ( n ) f ( x + i h ) + i = o n k i β i Δ p h ( v ) f ( x + i h ) , (2) Δ p h k f ( x ) = i = o p n h i α i Δ h ( n ) f ( x + i h ) + i = o n k i β i Δ p h ( v ) f ( x + i h ) , {:(2)Delta_(ph)^(k)f(x)=sum_(i=o)^(pn-h-i)alpha_(i)Delta_(h)^((n))f(x+ih)+sum_(i=o)^(n-k-i)beta_(i)Delta_(ph)^((v))f(x+ih)",":}\begin{equation*} \Delta_{p h}^{k} f(x)=\sum_{i=o}^{p n-h-i} \alpha_{i} \Delta_{h}^{(n)} f(x+i h)+\sum_{i=o}^{n-k-i} \beta_{i} \Delta_{p h}^{(v)} f(x+i h), \tag{2} \end{equation*}(2)Δphkf(x)=i=opnhiαiΔh(n)f(x+ih)+i=onkiβiΔph(v)f(x+ih),
THE α i , β i α i , β i alpha_(i),beta_(i)\alpha_{i}, \beta_{i}αi,βibeing constants independent of x , h x , h x,hx, hx,hand function f ( x ) f ( x ) f(x)f(x)f(x).
We see that the properties of No. I remain true for expression (1). In particular, if i = o n a i = 0 i = o n a i = 0 sum_(i=o)^(n)a_(i)=0\sum_{i=o}^{n} a_{i}=0i=onhasi=0and if (1) tends uniformly to zero, the function f ( x ) f ( x ) f(x)f(x)f(x)is zero identically in ( 0 , I 0 , I 0,I0, \mathrm{I}0,I). If
  1. W. Sierpinski: On measurable convex functions. Fund. Math. t. I (1920), pp. 125-129). M.W. Sierpinski also proved this theorem without using Zermelo's axiom, see: On the functional equation f ( x + y ) = f ( x ) + f ( y ) f ( x + y ) = f ( x ) + f ( y ) f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y)id. p. 116-122.
  2. T. Popoviciu: On some properties of functions of one or two real variables. Mathematica vol. VIII (1934) p. I— 85.
  3. T. Pcpoviciu: On certain functional equations defining polynomials". Mathematica t. X, (1934), p. 197-211.
  4. We will give the demonstration in a work which will appear in vol. XIV of the journal "Mathematica".
    i = o n a i = 0 , i = o n a i i = 0 i = o n a i = 0 , i = o n a i i = 0 sum_(i=o)^(n)a_(i)=0,sum_(i=o)^(n)a_(i)i=0\sum_{i=o}^{n} a_{i}=0, \sum_{i=o}^{n} a_{i} i=0i=onhasi=0,i=onhasii=0and if (1) tends to zero for all x x xxx, the function is continuous in ( 0 , 1 ) ( 0 , 1 ) (0,1)(0,1)(0,1).
  5. MA Marchaud also demonstrated that if f ( x ) f ( x ) f(x)f(x)f(x)is bounded and if the ratio h h Δ h h f ( x ) h h Δ h h f ( x ) h^(-h)Delta_(h)^(h)f(x)h^{-h} \Delta_{h}^{h} f(x)hhΔhhf(x)tends uniformly towards a determined function g ( x ) g ( x ) g(x)g(x)g(x), the function f ( x ) f ( x ) f(x)f(x)f(x)has a derivative k e ̀ m e k e ̀ m e k^(ème)k^{e ̀ m e}kèmecontinues which is (obviously) equal to g ( x ) g ( x ) g(x)g(x)g(x). Let us demonstrate that this theorem is still true for measurable functions, so
If f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)is measurable and if h k Δ h k f ( x ) h k Δ h k f ( x ) h^(-k)Delta_(h)^(k)f(x)\mathrm{h}^{-k} \Delta_{h}^{k} \mathrm{f}(\mathrm{x})hkΔhkf(x)tends uniformly to a function g ( x ) g ( x ) g(x)\mathrm{g}(\mathrm{x})g(x), the derivative k ème k ème  k^("ème ")k^{\text {ème }}kth of f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)exists, is continuous and we have f ( k ) ( x ) = g ( x ) f ( k ) ( x ) = g ( x ) f^((k))(x)=g(x)\mathrm{f}^{(k)}(\mathrm{x})=\mathrm{g}(\mathrm{x})f(k)(x)=g(x)In ( 0 , I ) ( 0 , I ) (0,I)(0, \mathrm{I})(0,I).
Indeed, for everything h , h k Δ h k f ( x ) h , h k Δ h k f ( x ) h,h^(-k)Delta_(h)^(k)f(x)h, h^{-k} \Delta_{h}^{k} f(x)h,hkΔhkf(x)is a measurable function, so g ( x ) g ( x ) g(x)g(x)g(x)is also. Note that Δ 2 h h f ( x ) = i = o h ( k i ) Δ h k f ( x + i h ) Δ 2 h h f ( x ) = i = o h ( k i ) Δ h k f ( x + i h ) Delta_(2h)^(h)f(x)=sum_(i=o)^(h)((k)/(i))Delta_(h)^(k)f(x+ih)\Delta_{2 h}^{h} f(x)=\sum_{i=o}^{h}\binom{k}{i} \Delta_{h}^{k} f(x+i h)Δ2hhf(x)=i=oh(ki)Δhkf(x+ih), SO
| I 2 k i = o k ( k i ) g ( x + i h ) g ( x ) | | Δ 2 h k f ( x ) ( 2 h ) k g ( x ) | + I 2 k i = o h ( k i ) | Δ h h f ( x + i h ) h k g ( x + i h ) | I 2 k i = o k ( k i ) g ( x + i h ) g ( x ) Δ 2 h k f ( x ) ( 2 h ) k g ( x ) + I 2 k i = o h ( k i ) Δ h h f ( x + i h ) h k g ( x + i h ) {:[|(I)/(2^(k))sum_(i=o)^(k)((k)/(i))g(x+ih)-g(x)| <= ],[ <= |(Delta_(2h)^(k)f(x))/((2h)^(k))-g(x)|+(I)/(2^(k))sum_(i=o)^(h)((k)/(i))|(Delta_(h)^(h)f(x+ih))/(h^(k))-g(x+ih)|]:}\begin{aligned} & \left|\frac{\mathrm{I}}{2^{k}} \sum_{i=o}^{k}\binom{k}{i} g(x+i h)-g(x)\right| \leqslant \\ & \leqslant\left|\frac{\Delta_{2 h}^{k} f(x)}{(2 h)^{k}}-g(x)\right|+\frac{\mathrm{I}}{2^{k}} \sum_{i=o}^{h}\binom{k}{i}\left|\frac{\Delta_{h}^{h} f(x+i h)}{h^{k}}-g(x+i h)\right| \end{aligned}|I2ki=ok(ki)g(x+ih)g(x)||Δ2hkf(x)(2h)kg(x)|+I2ki=oh(ki)|Δhhf(x+ih)hkg(x+ih)|
The expression of order I I III,
I 2 h i = o k ( k i ) g ( x + i h ) g ( x ) , I 2 h i = o k ( k i ) g ( x + i h ) g ( x ) , (I)/(2^(h))sum_(i=o)^(k)((k)/(i))g(x+ih)-g(x),\frac{\mathrm{I}}{2^{h}} \sum_{i=o}^{k}\binom{k}{i} g(x+i h)-g(x),I2hi=ok(ki)g(x+ih)g(x),
therefore tends (moreover uniformly) towards zero. It follows that g ( x ) g ( x ) g(x)g(x)g(x)is continuous and, therefore, bounded in ( 0 , I 0 , I 0,I0, \mathrm{I}0,I). SO, Δ h h f ( x ) Δ h h f ( x ) Delta_(h)^(h)f(x)\Delta_{h}^{h} f(x)Δhhf(x)tends uniformly towards zero, so f ( x ) f ( x ) f(x)f(x)f(x)is also continuous. The stated property results from this.
If we pose f ( x ) = x h f ( x ) = x h f(x)=x^(h)f(x)=x^{h}f(x)=xhin (2), we find
I p k i = o p n k 1 α i + i = o n k 1 β i = k ! i = o k a i i k I p k i = o p n k 1 α i + i = o n k 1 β i = k ! i = o k a i i k (I)/(p^(k))sum_(i=o)^(pn-k-1)alpha_(i)+sum_(i=o)^(n-k-1)beta_(i)=(k!)/(sum_(i=o)^(k)a_(i)i^(k))\frac{\mathrm{I}}{p^{k}} \sum_{i=o}^{p n-k-1} \alpha_{i}+\sum_{i=o}^{n-k-1} \beta_{i}=\frac{k!}{\sum_{i=o}^{k} a_{i} i^{k}}Ipki=opnk1αi+i=onk1βi=k!i=okhasiik
and we deduce the following property:
If f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)is measurable or if f ( x ) f ( x ) f(x)\mathrm{f}(x)f(x)is bounded and if h k Δ h ( n ) f ( x ) h k Δ h ( n ) f ( x ) h^(-k)Delta_(h)^((n))f(x)\mathrm{h}^{-k} \Delta_{h}^{(n)} \mathrm{f}(\mathrm{x})hkΔh(n)f(x)tends uniformly to a function g ( x ) g ( x ) g(x)\mathrm{g}(\mathrm{x})g(x), the function f ( x ) f ( x ) f(x)\mathrm{f}(\mathrm{x})f(x)has a derivative k ème k ème  k^("ème ")\mathrm{k}^{\text {ème }}kth continue and we have
f ( k ) ( x ) = k ! i = o n a i i k g ( x ) , x ( 0 , I ) . f ( k ) ( x ) = k ! i = o n a i i k g ( x ) , x ( 0 , I ) . f^((k))(x)=(k!)/(sum_(i=o)^(n)a_(i)i^(k))g(x),quad x sub(0,I).f^{(k)}(x)=\frac{k!}{\sum_{i=o}^{n} a_{i} i^{k}} g(x), \quad x \subset(0, \mathrm{I}) .f(k)(x)=k!i=onhasiikg(x),x(0,I).

    1. A. Marchaud: On the derivatives and on the differences of functions of real variables. Journ, de Math. t. 6 (1927), p. 337-425.
1938

Related Posts