On the Extensions Preserving the Shape of a Semi-Hölder Function

Abstract

We present some results concerning the extension of a semi-Hölder real-valued function defined on a subset of a quasi-metric space, preserving some shape properties: the smallest semi-Hölder constant, the radiantness and the global minimum (maximum) of the extended function.

Authors

Costică Mustăța
”Tiberiu Popoviciu” Institute of Numerical Analysis Cluj-Napoca, Romanian Academy

Keywords

Quasi-metric space; semi-Holder function; radiant function

Paper coordinates

Mustăţa, C., On the extensions preserving the shape of a semi-Hölder function, Results. Math. 63 (2013), 425–433.
doi: 10.1007/s00025-011-0206-x

PDF

About this paper

Journal

Results in Mathematics

Publisher Name

Springer

Print ISSN

1422-6383

Online ISSN

1420-9012

Google Scholar Profile

?

[1] Breckner, W.W.: Holder continuity of certain generalized convex functions. Optimization 28, 201–209 (1994)
[2] Cobzas, S.: Functional analysis in asymmetric normed spaces, arXiv:1006. 1175v1.
[3] Collins, J., Zimmer, J.: An asymmetric Arzel`a-Ascoli theorem. Topol. Appl. 154, 2312–2322 (2007)
[4] Doagooei, A.R., Mohebi, H.: Optimization of the difference of ICR functions. Nonlinear Anal. Theor. Method Appl. 71, 4493–4499 (2009)
[5] Flecther, P., Lindgren, W.F.: Quasi-uniform spaces. Dekker, New York (1982)
[6] Krein, M.G., Nudel’man, A.A.: The Markov moment problem and extremum problems, Nauka, Moscow 1973 (in Russian), English translation . American Mathematical Society, Providence (1977)
[7] Kunzi, H.-P.A.: Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topology. In: Aull, C.E., Lowen, R. Handbook of the history of general topology, pp. 853–968. Kluwer Academic Publishers, Dordrecht (2001)
[8] Martinez-Legaz, J.E., Rubinov, A.M., Schaible, S.: Increasing quasi-concave coradiant functions with applications in mathematical economics. Math. Oper. Res. 61, 261–280 (2005)
[9] Matouskova, E.: Extensions of continuous and Lipschitz functions. Canad. Math. Bull. 43(2), 208–217 (2000)
[10] McShane, E.T.: Extension of range of functions. Bull. Am. Math. Soc. 40, 837–842 (1934)
[11] Mennucci, A.: On asymmetric distances, Tech. Rep. Scuola Normale Superiore, Pisa (2004)
[12] Mustata, C.: Extension of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Num´er. Th´eor. Approx. 30, 61–67 (2001)
[13] Mustata, C.: A Phelps type theorem for spaces with asymmetric norms. Bull. Stiint¸. Univ. Baia Mare, Ser. B. Matematic˘a-Informatic˘a 18, 275–280 (2002)
[14] Mustata, C.: On the approximation of the global extremum of a semi-Lipschitz function. Mediterr. J. Math. 6, 169–180 (2009)
[15] Mustata, C.: Extensions of semi-H¨older real valued functions on a quasi-metric space. Rev. Anal. Num´er. Th´eor. Approx. 38, 164–169 (2009)
[16] Phelps, R.R.: Uniqueness of Hahn-Banach extension and unique best approximation. Trans. Am. Math. Soc. 95, 238–255 (1960)
[17] Romaguera, S., Sanchis, M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theor. 103, 292–301 (2000)
[18] Romaguera, S., Sanchis, M.: Properties of the normed cone of semi-Lipschitz functions. Acta Math. Hungar 108, 55–70 (2005)

Paper (preprint) in HTML form

2013-Mustata-On the Extensions Preserving-Result Math

On the Extensions Preserving the Shape of a Semi-Hölder Function

Costică Mustăţa

Abstract

We present some results concerning the extension of a semiHölder real-valued function defined on a subset of a quasi-metric space, preserving some shape properties: the smallest semi-Hölder constant, the radiantness and the global minimum (maximum) of the extended function.

Mathematics Subject Classification (2000). 46A22, 54E25.
Keywords. Quasi-metric space, semi-Hölder function, radiant function.

1. Introduction

Let X X XXX be a nonvoid set. A mapping d : X × X [ 0 , ) d : X × X [ 0 , ) d:X xx X rarr[0,oo)d: X \times X \rightarrow[0, \infty)d:X×X[0,) satisfying the following conditions:
( QM 1 ) d ( x , y ) = d ( y , x ) = 0 QM 1 d ( x , y ) = d ( y , x ) = 0 (QM_(1))d(x,y)=d(y,x)=0quad\left(\mathrm{QM}_{1}\right) d(x, y)=d(y, x)=0 \quad(QM1)d(x,y)=d(y,x)=0 iff x = y x = y x=yx=yx=y,
( QM 2 ) d ( x , y ) d ( x , z ) + d ( z , y ) QM 2 d ( x , y ) d ( x , z ) + d ( z , y ) (QM_(2))d(x,y) <= d(x,z)+d(z,y)\left(\mathrm{QM}_{2}\right) d(x, y) \leq d(x, z)+d(z, y)(QM2)d(x,y)d(x,z)+d(z,y),
for all x , y , z X x , y , z X x,y,z in Xx, y, z \in Xx,y,zX is called a quasi-metric (asymmetric metric) on X X XXX, and the pair ( X , d X , d X,dX, dX,d ) is called a quasi-metric space [ 17,18 ].
Because, in general, d ( x , y ) d ( y , x ) , x , y X d ( x , y ) d ( y , x ) , x , y X d(x,y)!=d(y,x),x,y in Xd(x, y) \neq d(y, x), x, y \in Xd(x,y)d(y,x),x,yX, one defines the conjugate d ¯ d ¯ bar(d)\bar{d}d¯ of quasi-metric d d ddd as the quasi-metric d ¯ ( x , y ) = d ( y , x ) , x , y X d ¯ ( x , y ) = d ( y , x ) , x , y X bar(d)(x,y)=d(y,x),x,y in X\bar{d}(x, y)=d(y, x), x, y \in Xd¯(x,y)=d(y,x),x,yX.
For example, an asymmetric norm ||∣\| \mid on a linear space X X XXX (see [6], Ch. IX, § 5) or [2], where a functional analysis in asymmetric normed space is presented) defines a quasi-metric d d d_(||∣)d_{\| \mid}dthrough the formula:
d | ( x , y ) = y x | , x , y X . d | ( x , y ) = y x | , x , y X . d_(||)|(x,y)=||y-x|,x,y in X.d_{\|}|(x, y)=\| y-x|, x, y \in X .d|(x,y)=yx|,x,yX.
Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space. A sequence ( x k ) k 1 x k k 1 (x_(k))_(k >= 1)\left(x_{k}\right)_{k \geq 1}(xk)k1 is d d ddd-convergent to x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X (or forward convergent to x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X ) if
lim k d ( x 0 , x k ) = 0 lim k d x 0 , x k = 0 lim_(k rarr oo)d(x_(0),x_(k))=0\lim _{k \rightarrow \infty} d\left(x_{0}, x_{k}\right)=0limkd(x0,xk)=0
and d ¯ d ¯ bar(d)\bar{d}d¯-convergent to x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X (or backward convergent to x 0 X x 0 X x_(0)in Xx_{0} \in Xx0X ) if
lim k d ( x k , x 0 ) = lim k d ¯ ( x 0 , x k ) = 0 lim k d x k , x 0 = lim k d ¯ x 0 , x k = 0 lim_(k rarr oo)d(x_(k),x_(0))=lim_(k rarr oo) bar(d)(x_(0),x_(k))=0\lim _{k \rightarrow \infty} d\left(x_{k}, x_{0}\right)=\lim _{k \rightarrow \infty} \bar{d}\left(x_{0}, x_{k}\right)=0limkd(xk,x0)=limkd¯(x0,xk)=0
We say that the set Y X Y X Y sub XY \subset XYX is d d ddd-closed ( d ¯ d ¯ bar(d)\bar{d}d¯-closed) if every d d ddd-convergent ( d ¯ d ¯ bar(d)\bar{d}d¯-convergent) sequence ( y n ) n 1 Y y n n 1 Y (y_(n))_(n >= 1)sub Y\left(y_{n}\right)_{n \geq 1} \subset Y(yn)n1Y has limit in Y Y YYY.
We say that a set Y X Y X Y sub XY \subset XYX is d d ddd-sequentially compact (forward sequentially compact) if every sequence in Y Y YYY has a d d ddd-convergent (forward convergent) subsequence with limit in Y Y YYY (Definition 4.1 in [3]). Finally, the set Y Y YYY in ( X , d ) ( X , d ) (X,d)(X, d)(X,d) is called ( d , d ¯ d , d ¯ d, bar(d)d, \bar{d}d,d¯ )-sequentially compact if every sequence ( y n ) n 1 y n n 1 (y_(n))_(n >= 1)\left(y_{n}\right)_{n \geq 1}(yn)n1 in Y Y YYY has a subsequence ( y n k ) k 1 d y n k k 1 d (y_(n_(k)))_(k >= 1)d\left(y_{n_{k}}\right)_{k \geq 1} d(ynk)k1d-convergent to u Y u Y u in Yu \in YuY and d ¯ d ¯ bar(d)\bar{d}d¯-convergent to v Y v Y v in Yv \in YvY. For other properties and results in asymmetric metric spaces, see also [3,5,7,11-18].

2. Extension of Semi-Hölder Functions

Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, Y X Y X Y sub XY \subset XYX be a nonvoid subset of X X XXX and α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] a given number.
Definition 1. A function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR is called d d ddd-semi-Hölder (of exponent α α alpha\alphaα ) if there exists a constant K Y ( f ) 0 K Y ( f ) 0 K_(Y)(f) >= 0K_{Y}(f) \geq 0KY(f)0 such that
(1) f ( x ) f ( y ) K Y ( f ) d α ( x , y ) (1) f ( x ) f ( y ) K Y ( f ) d α ( x , y ) {:(1)f(x)-f(y) <= K_(Y)(f)d^(alpha)(x","y):}\begin{equation*} f(x)-f(y) \leq K_{Y}(f) d^{\alpha}(x, y) \tag{1} \end{equation*}(1)f(x)f(y)KY(f)dα(x,y)
for all x , y Y x , y Y x,y in Yx, y \in Yx,yY.
For f f fff a function d d ddd-semi-Hölder on Y Y YYY denote by
(2) f | Y , d α := sup { ( f ( x ) f ( y ) ) 0 d α ( x , y ) : d ( x , y ) > 0 , x , y Y } (2) f Y , d α := sup ( f ( x ) f ( y ) ) 0 d α ( x , y ) : d ( x , y ) > 0 , x , y Y {:(2)||f|_(Y,d)^(alpha):=s u p{((f(x)-f(y))vv0)/(d^(alpha)(x,y)):d(x,y) > 0,x,y in Y}:}\begin{equation*} \|\left. f\right|_{Y, d} ^{\alpha}:=\sup \left\{\frac{(f(x)-f(y)) \vee 0}{d^{\alpha}(x, y)}: d(x, y)>0, x, y \in Y\right\} \tag{2} \end{equation*}(2)f|Y,dα:=sup{(f(x)f(y))0dα(x,y):d(x,y)>0,x,yY}
the smallest constant K Y ( f ) K Y ( f ) K_(Y)(f)K_{Y}(f)KY(f), satisfying the inequality (1).
A function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR is called d d <= _(d)\leq_{d}d-increasing if f ( x ) f ( y ) f ( x ) f ( y ) f(x) <= f(y)f(x) \leq f(y)f(x)f(y) whenever d ( x , y ) = 0 , x , y Y d ( x , y ) = 0 , x , y Y d(x,y)=0,x,y in Yd(x, y)=0, x, y \in Yd(x,y)=0,x,yY.
The set R d Y R d Y R_( <= _(d))^(Y)\mathbb{R}_{\leq_{d}}^{Y}RdY of all d d <= _(d)\leq_{d}d-increasing functions on Y Y YYY is a cone in the linear space R Y R Y R^(Y)\mathbb{R}^{Y}RY of all real-valued functions defined on Y Y YYY.
One denotes by
(3) Λ α ( Y , d ) := { f R d Y f is d -semi-Hölder } (3) Λ α ( Y , d ) := f R d Y f  is  d -semi-Hölder  {:(3)Lambda_(alpha)(Y","d):={f inR_( <= _(d))^(Y)∣f" is "d"-semi-Hölder "}:}\begin{equation*} \Lambda_{\alpha}(Y, d):=\left\{f \in \mathbb{R}_{\leq_{d}}^{Y} \mid f \text { is } d \text {-semi-Hölder }\right\} \tag{3} \end{equation*}(3)Λα(Y,d):={fRdYf is d-semi-Hölder }
the set of all d d ddd-semi-Hölder functions on Y Y YYY. This set is a subcone of the cone R d Y R d Y R_( <= _(d))^(Y)\mathbb{R}_{\leq_{d}}^{Y}RdY.
For y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y fixed, let
(4) Λ α , 0 ( Y , d ) := { f Λ α ( Y , d ) , f ( y 0 ) = 0 } . (4) Λ α , 0 ( Y , d ) := f Λ α ( Y , d ) , f y 0 = 0 . {:(4)Lambda_(alpha,0)(Y","d):={f inLambda_(alpha)(Y,d),f(y_(0))=0}.:}\begin{equation*} \Lambda_{\alpha, 0}(Y, d):=\left\{f \in \Lambda_{\alpha}(Y, d), f\left(y_{0}\right)=0\right\} . \tag{4} \end{equation*}(4)Λα,0(Y,d):={fΛα(Y,d),f(y0)=0}.
The functional | Y , d α : Λ α , 0 ( Y , d ) [ 0 , ) Y , d α : Λ α , 0 ( Y , d ) [ 0 , ) |||_(Y,d)^(alpha):Lambda_(alpha,0)(Y,d)rarr[0,oo)\|\left.\right|_{Y, d} ^{\alpha}: \Lambda_{\alpha, 0}(Y, d) \rightarrow[0, \infty)|Y,dα:Λα,0(Y,d)[0,) defined by (2) satisfies the axioms of an asymmetric norm, and ( Λ α , 0 ( Y , d ) , | Y , d α Λ α , 0 ( Y , d ) , Y , d α Lambda_(alpha,0)(Y,d),|||_(Y,d)^(alpha)\Lambda_{\alpha, 0}(Y, d), \|\left.\right|_{Y, d} ^{\alpha}Λα,0(Y,d),|Y,dα ) is an asymmetric normed cone (compare with [18]).
Observe that f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) if and only if f Λ α ( Y , d ¯ ) f Λ α ( Y , d ¯ ) -f inLambda_(alpha)(Y, bar(d))-f \in \Lambda_{\alpha}(Y, \bar{d})fΛα(Y,d¯); moreover f | Y , d α = f | Y , d ¯ α f Y , d α = f Y , d ¯ α ||f|_(Y,d)^(alpha)=||-f|_(Y, bar(d))^(alpha)\left\|\left.f\right|_{Y, d} ^{\alpha}=\right\|-\left.f\right|_{Y, \bar{d}} ^{\alpha}f|Y,dα=f|Y,d¯α.
Example 1. Let Y Y YYY be a set in a quasi-metric space ( X , d X , d X,dX, dX,d ) and let y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y be fixed. For a number α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] one considers the function f : Y R , f ( y ) = d α ( y , y 0 ) f : Y R , f ( y ) = d α y , y 0 f:Y rarrR,f(y)=d^(alpha)(y,y_(0))f: Y \rightarrow \mathbb{R}, f(y)= d^{\alpha}\left(y, y_{0}\right)f:YR,f(y)=dα(y,y0). Then f Λ α , 0 ( Y , d ) f Λ α , 0 ( Y , d ) f inLambda_(alpha,0)(Y,d)f \in \Lambda_{\alpha, 0}(Y, d)fΛα,0(Y,d). Indeed, for all y 1 , y 2 Y y 1 , y 2 Y y_(1),y_(2)in Yy_{1}, y_{2} \in Yy1,y2Y,
f ( y 1 ) f ( y 2 ) = d α ( y 1 , y 0 ) d α ( y 2 , y 0 ) d α ( y 1 , y 2 ) . f y 1 f y 2 = d α y 1 , y 0 d α y 2 , y 0 d α y 1 , y 2 . f(y_(1))-f(y_(2))=d^(alpha)(y_(1),y_(0))-d^(alpha)(y_(2),y_(0)) <= d^(alpha)(y_(1),y_(2)).f\left(y_{1}\right)-f\left(y_{2}\right)=d^{\alpha}\left(y_{1}, y_{0}\right)-d^{\alpha}\left(y_{2}, y_{0}\right) \leq d^{\alpha}\left(y_{1}, y_{2}\right) .f(y1)f(y2)=dα(y1,y0)dα(y2,y0)dα(y1,y2).
The last inequality follows by the following simple lemma:
Lemma 1. Let a , b , c a , b , c a,b,ca, b, ca,b,c be real nonnegative numbers such that a b + c a b + c a <= b+ca \leq b+cab+c. Then for α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] it follows a α b α + c α a α b α + c α a^(alpha) <= b^(alpha)+c^(alpha)a^{\alpha} \leq b^{\alpha}+c^{\alpha}aαbα+cα.
Since d ( y 1 , y 0 ) d ( y 1 , y 2 ) + d ( y 2 , y 0 ) d y 1 , y 0 d y 1 , y 2 + d y 2 , y 0 d(y_(1),y_(0)) <= d(y_(1),y_(2))+d(y_(2),y_(0))d\left(y_{1}, y_{0}\right) \leq d\left(y_{1}, y_{2}\right)+d\left(y_{2}, y_{0}\right)d(y1,y0)d(y1,y2)+d(y2,y0) and α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1], Lemma 1 yields d α ( y 1 , y 0 ) d α ( y 1 , y 2 ) + d α ( y 2 , y 0 ) d α y 1 , y 0 d α y 1 , y 2 + d α y 2 , y 0 d^(alpha)(y_(1),y_(0)) <= d^(alpha)(y_(1),y_(2))+d^(alpha)(y_(2),y_(0))d^{\alpha}\left(y_{1}, y_{0}\right) \leq d^{\alpha}\left(y_{1}, y_{2}\right)+d^{\alpha}\left(y_{2}, y_{0}\right)dα(y1,y0)dα(y1,y2)+dα(y2,y0), i.e., d α ( y 1 , y 0 ) d α ( y 2 , y 0 ) d α ( y 1 , y 2 ) d α y 1 , y 0 d α y 2 , y 0 d α y 1 , y 2 d^(alpha)(y_(1),y_(0))-d^(alpha)(y_(2),y_(0)) <= d^(alpha)(y_(1),y_(2))d^{\alpha}\left(y_{1}, y_{0}\right)-d^{\alpha}\left(y_{2}, y_{0}\right) \leq d^{\alpha}\left(y_{1}, y_{2}\right)dα(y1,y0)dα(y2,y0)dα(y1,y2).
Example 2. Let ( X , X , X,||∣X, \| \midX, ) be an asymmetric normed space. For a fixed y 0 X y 0 X y_(0)in Xy_{0} \in Xy0X and α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] the function h ( x ) = x y 0 | α h ( x ) = x y 0 α h(x)=||x-y_(0)|^(alpha)h(x)=\| x-\left.y_{0}\right|^{\alpha}h(x)=xy0|α is d d d_(||)d_{\|}d-semi-Hölder, where d y 0 , x ) = x y 0 , x X d y 0 , x = x y 0 , x X {:d_(||)∣y_(0),x)=||x-y_(0)∣,x in X\left.d_{\|} \mid y_{0}, x\right)=\| x-y_{0} \mid, x \in Xdy0,x)=xy0,xX. Using Lemma 1 it follows h ( x 1 ) h ( x 2 ) x 1 x 2 | α , x 1 , x 2 X h x 1 h x 2 x 1 x 2 α , x 1 , x 2 X h(x_(1))-h(x_(2)) <= ||x_(1)-x_(2)|^(alpha),x_(1),x_(2)in Xh\left(x_{1}\right)-h\left(x_{2}\right) \leq \| x_{1}-\left.x_{2}\right|^{\alpha}, x_{1}, x_{2} \in Xh(x1)h(x2)x1x2|α,x1,x2X, and h ( y 0 ) = 0 h y 0 = 0 h(y_(0))=0h\left(y_{0}\right)=0h(y0)=0. This means that h Λ α , 0 ( X , d ) h Λ α , 0 X , d h inLambda_(alpha,0)(X,d_(||))h \in \Lambda_{\alpha, 0}\left(X, d_{\|}\right)hΛα,0(X,d).
Remark 1. By Lemma 1 it follows that if d d ddd is a quasi-metric on X X XXX, then d α ( α ( 0 , 1 ] ) d α ( α ( 0 , 1 ] ) d^(alpha)(alpha in(0,1])d^{\alpha}(\alpha \in(0,1])dα(α(0,1]) is also a quasi-metric on X X XXX. In fact a d d ddd-semi-Hölder function f f fff (of exponent α ( 0 , 1 ] ) α ( 0 , 1 ] ) alpha in(0,1])\alpha \in(0,1])α(0,1]) on Y Y YYY is a d α d α d^(alpha)d^{\alpha}dα-semi-Lipschitz function on ( Y , d α Y , d α Y,d^(alpha)Y, d^{\alpha}Y,dα ) (see [17], for the definition of semi-Lipschitz functions).
The following theorem holds.
Theorem 1. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, let Y Y YYY be a nonvoid subset of X X XXX, let α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1], and let f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d). Further, let E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) be defined by
(5) E d ( f ) := { H Λ α ( X , d ) : H | Y = f , H | X , d α = f | Y , d α } . (5) E d ( f ) := H Λ α ( X , d ) : H Y = f , H X , d α = f Y , d α . {:(5)E_(d)(f):={H inLambda_(alpha)(X,d):H|_(Y)=f,||H|_(X,d)^(alpha)=||f|_(Y,d)^(alpha)}.:}\begin{equation*} \mathcal{E}_{d}(f):=\left\{H \in \Lambda_{\alpha}(X, d):\left.H\right|_{Y}=f,\left.\left\|\left.H\right|_{X, d} ^{\alpha}=\right\| f\right|_{Y, d} ^{\alpha}\right\} . \tag{5} \end{equation*}(5)Ed(f):={HΛα(X,d):H|Y=f,H|X,dα=f|Y,dα}.
Then the following statements hold:
1 0 1 0 1^(0)1^{0}10 The function F d ( f ) : X R F d ( f ) : X R F_(d)(f):X rarrRF_{d}(f): X \rightarrow \mathbb{R}Fd(f):XR, defined by
(6) F d ( f ) ( x ) := inf y Y { f ( y ) + f | Y , d α d α ( x , y ) } , (6) F d ( f ) ( x ) := inf y Y f ( y ) + f Y , d α d α ( x , y ) , {:(6)F_(d)(f)(x):=i n f_(y in Y){f(y)+||f|_(Y,d)^(alpha)d^(alpha)(x,y)}",":}\begin{equation*} F_{d}(f)(x):=\inf _{y \in Y}\left\{f(y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(x, y)\right\}, \tag{6} \end{equation*}(6)Fd(f)(x):=infyY{f(y)+f|Y,dαdα(x,y)},
belongs to E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f).
2 0 2 0 2^(0)2^{0}20 The function G d ( f ) : X R G d ( f ) : X R G_(d)(f):X rarrRG_{d}(f): X \rightarrow \mathbb{R}Gd(f):XR, defined by
(7) G d ( f ) ( x ) := sup y Y { f ( y ) f | Y , d α d α ( y , x ) } , (7) G d ( f ) ( x ) := sup y Y f ( y ) f Y , d α d α ( y , x ) , {:(7)G_(d)(f)(x):=s u p_(y in Y){f(y)-||f|_(Y,d)^(alpha)*d^(alpha)(y,x)}",":}\begin{equation*} G_{d}(f)(x):=\sup _{y \in Y}\left\{f(y)-\|\left. f\right|_{Y, d} ^{\alpha} \cdot d^{\alpha}(y, x)\right\}, \tag{7} \end{equation*}(7)Gd(f)(x):=supyY{f(y)f|Y,dαdα(y,x)},
belongs to E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f).
3 0 3 0 3^(0)3^{0}30 Each H E d ( f ) H E d ( f ) H inE_(d)(f)H \in \mathcal{E}_{d}(f)HEd(f) satisfies
(8) G d ( f ) ( x ) H ( x ) F d ( f ) ( x ) , (8) G d ( f ) ( x ) H ( x ) F d ( f ) ( x ) , {:(8)G_(d)(f)(x) <= H(x) <= F_(d)(f)(x)",":}\begin{equation*} G_{d}(f)(x) \leq H(x) \leq F_{d}(f)(x), \tag{8} \end{equation*}(8)Gd(f)(x)H(x)Fd(f)(x),
whenever x X x X x in Xx \in XxX.
Proof. If f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) then f f fff is d α d α d^(alpha)d^{\alpha}dα-semi-Lipschitz on ( Y , d α ) Y , d α (Y,d^(alpha))\left(Y, d^{\alpha}\right)(Y,dα). By ([12], Theorem 2) it follows that the functions F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) defined by (6), and G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) defined by (7) satisfy
(9) F d ( f ) | Y = G d ( f ) | Y = f , F d ( f ) X , d α = G d ( f ) X , d α = f | Y , d α (9) F d ( f ) Y = G d ( f ) Y = f , F d ( f ) X , d α = G d ( f ) X , d α = f Y , d α {:(9)F_(d)(f)|_(Y)=G_(d)(f)|_(Y)=f","quad||F_(d)(f)||_(X,d)^(alpha)=||G_(d)(f)||_(X,d)^(alpha)=||f|_(Y,d)^(alpha):}\begin{equation*} \left.F_{d}(f)\right|_{Y}=\left.G_{d}(f)\right|_{Y}=f, \quad\left\|F_{d}(f)\right\|_{X, d}^{\alpha}=\left\|G_{d}(f)\right\|_{X, d}^{\alpha}=\|\left. f\right|_{Y, d} ^{\alpha} \tag{9} \end{equation*}(9)Fd(f)|Y=Gd(f)|Y=f,Fd(f)X,dα=Gd(f)X,dα=f|Y,dα
Consequently, the statements 1 0 1 0 1^(0)1^{0}10 and 2 0 2 0 2^(0)2^{0}20 are proved.
The inequalities (8) are proved in [12] for semi-Lipschitz functions (see also ([15], Remark 3), so that the statement 3 0 3 0 3^(0)3^{0}30 holds too.
The set E d ( f ) E d ( f ) E_(d)(f)\mathcal{E}_{d}(f)Ed(f) defined in (5) is called the set of extensions of f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) (preserving the smallest constant f | Y , d α f Y , d α ||f|_(Y,d)^(alpha)\|\left. f\right|_{Y, d} ^{\alpha}f|Y,dα ). The functions F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f), respectively G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) are called the maximal extension, respectively the minimal extension of f f fff [see (8)].
Remark 2. In [15] one gives a direct proof of Theorem 1, by considering the function G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) defined by (7) and proving that G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) is well defined, G d ( f ) | Y = f G d ( f ) Y = f G_(d)(f)|_(Y)=f\left.G_{d}(f)\right|_{Y}=fGd(f)|Y=f and G d ( f ) | X , d α = f | Y , d α G d ( f ) X , d α = f Y , d α ||G_(d)(f)|_(X,d)^(alpha)=||f|_(Y,d)^(alpha)\left.\left\|\left.G_{d}(f)\right|_{X, d} ^{\alpha}=\right\| f\right|_{Y, d} ^{\alpha}Gd(f)|X,dα=f|Y,dα (see also [10,12]).
A natural problem is the following: If f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) has some supplementtary properties, does there exist H E d ( f ) H E d ( f ) H inE_(d)(f)H \in \mathcal{E}_{d}(f)HEd(f) preserving these properties? Such a problem is considered in [9] for Lipschitz functions.
We shall consider two problems of such kind.
For the first one, in the sequel ( X , d X , d X,dX, dX,d ) is a quasi-metric linear space and Y X Y X Y sub XY \subset XYX is a subset of X X XXX.
The set Y Y YYY is said to be radiant if it has the following properties:
(i) Y Y YYY is nonvoid;
(ii) λ y Y λ y Y lambda y in Y\lambda y \in YλyY for all y Y y Y y in Yy \in YyY and all λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1].
Let Y Y YYY be a radiant set in X X XXX, and let f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR, and let α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1]. The function f f fff is said to be α α alpha\alphaα-radiant if
(10) f ( λ y ) λ α f ( y ) , (10) f ( λ y ) λ α f ( y ) , {:(10)f(lambda y) <= lambda^(alpha)f(y)",":}\begin{equation*} f(\lambda y) \leq \lambda^{\alpha} f(y), \tag{10} \end{equation*}(10)f(λy)λαf(y),
for all y Y y Y y in Yy \in YyY and all λ ( 0 , 1 ] λ ( 0 , 1 ] lambda in(0,1]\lambda \in(0,1]λ(0,1].
The 1 -radiant functions are called, simply, radiant.
Observe that all radiant sets in a linear space X X XXX contain the null element θ θ theta\thetaθ of X X XXX, and every α α alpha\alphaα-radiant function satisfies f ( θ ) 0 f ( θ ) 0 f(theta) <= 0f(\theta) \leq 0f(θ)0. We consider only functions satisfying f ( θ ) = 0 f ( θ ) = 0 f(theta)=0f(\theta)=0f(θ)=0.
The function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR is said to be α α alpha\alphaα-co-radiant ( α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] ) if
(11) f ( λ y ) λ α f ( y ) (11) f ( λ y ) λ α f ( y ) {:(11)f(lambda y) >= lambda^(alpha)f(y):}\begin{equation*} f(\lambda y) \geq \lambda^{\alpha} f(y) \tag{11} \end{equation*}(11)f(λy)λαf(y)
for all y Y y Y y in Yy \in YyY and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1]. The 1-co-radiant functions are called co-radiant [ 4 , 8 ] [ 4 , 8 ] [4,8][4,8][4,8].
The function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR is called α α alpha\alphaα-inverse co-radiant ( α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] is fixed) if
(12) f ( λ y ) 1 λ α f ( y ) , (12) f ( λ y ) 1 λ α f ( y ) , {:(12)f(lambda y) <= (1)/(lambda^(alpha))f(y)",":}\begin{equation*} f(\lambda y) \leq \frac{1}{\lambda^{\alpha}} f(y), \tag{12} \end{equation*}(12)f(λy)1λαf(y),
for all y Y y Y y in Yy \in YyY and λ ( 0 , 1 ] λ ( 0 , 1 ] lambda in(0,1]\lambda \in(0,1]λ(0,1]. The 1 -inverse co-radiant functions are called inverse co-radiant.
Obviously, every nonnegative α α alpha\alphaα-co-radiant function is co-radiant, and every inverse co-radiant function is α α alpha\alphaα-inverse co-radiant.
If Y Y YYY is a convex set in X X XXX, a function f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR is called α α alpha\alphaα-convex ( α [ 0 , 1 ] ) ( α [ 0 , 1 ] ) (alpha in[0,1])(\alpha \in[0,1])(α[0,1]) if
(13) f ( λ x + ( 1 λ ) y ) λ α f ( x ) + ( 1 λ ) α f ( y ) , (13) f ( λ x + ( 1 λ ) y ) λ α f ( x ) + ( 1 λ ) α f ( y ) , {:(13)f(lambda x+(1-lambda)y) <= lambda^(alpha)f(x)+(1-lambda)^(alpha)f(y)",":}\begin{equation*} f(\lambda x+(1-\lambda) y) \leq \lambda^{\alpha} f(x)+(1-\lambda)^{\alpha} f(y), \tag{13} \end{equation*}(13)f(λx+(1λ)y)λαf(x)+(1λ)αf(y),
for all x , y Y x , y Y x,y in Yx, y \in Yx,yY and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1] (see [1]).
If θ Y θ Y theta in Y\theta \in YθY and Y Y YYY is convex, then every convex function ( α = 1 α = 1 alpha=1\alpha=1α=1 ) on Y Y YYY with f ( θ ) = 0 f ( θ ) = 0 f(theta)=0f(\theta)=0f(θ)=0 is radiant, and every α α alpha\alphaα-convex function on Y Y YYY such that f ( θ ) = 0 f ( θ ) = 0 f(theta)=0f(\theta)=0f(θ)=0 is α α alpha\alphaα-radiant, because
f ( λ x ) = f ( λ x + ( 1 λ ) θ ) λ α f ( x ) + ( 1 λ ) α f ( θ ) = λ α f ( x ) , f ( λ x ) = f ( λ x + ( 1 λ ) θ ) λ α f ( x ) + ( 1 λ ) α f ( θ ) = λ α f ( x ) , f(lambda x)=f(lambda x+(1-lambda)theta) <= lambda^(alpha)f(x)+(1-lambda)^(alpha)f(theta)=lambda^(alpha)f(x),f(\lambda x)=f(\lambda x+(1-\lambda) \theta) \leq \lambda^{\alpha} f(x)+(1-\lambda)^{\alpha} f(\theta)=\lambda^{\alpha} f(x),f(λx)=f(λx+(1λ)θ)λαf(x)+(1λ)αf(θ)=λαf(x),
for all x Y x Y x in Yx \in YxY and λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1].
A quasi-metric d d ddd on a quasi-metric linear space X X XXX is called positively homogeneous if
(14) d ( λ x , λ y ) = λ d ( x , y ) (14) d ( λ x , λ y ) = λ d ( x , y ) {:(14)d(lambda x","lambda y)=lambda d(x","y):}\begin{equation*} d(\lambda x, \lambda y)=\lambda d(x, y) \tag{14} \end{equation*}(14)d(λx,λy)=λd(x,y)
for all x , y X x , y X x,y in Xx, y \in Xx,yX and λ 0 λ 0 lambda >= 0\lambda \geq 0λ0. Such a quasi-metric is for example d d d_(||)∣d_{\|} \midd, generated by an asymmetric norm ||∣\| \mid.
The following result holds.
Theorem 2. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric linear space with d d ddd positively homogeneous, let Y Y YYY be a radiant subset of X X XXX, let α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1] and let f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d). Then the following statements hold:
1 0 1 0 1^(0)1^{0}10 If f f fff is α α alpha\alphaα-radiant, then F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) is α α alpha\alphaα-radiant.
2 0 2 0 2^(0)2^{0}20 If f f fff is α α alpha\alphaα-co-radiant, then G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) is α α alpha\alphaα-co-radiant.
3 0 3 0 3^(0)3^{0}30 If f f fff is inverse co-radiant, then F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) is inverse co-radiant.
Proof. Let f : Y R f : Y R f:Y rarrRf: Y \rightarrow \mathbb{R}f:YR be radiant, and f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d). Let us consider the maximal extension F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f). Then for all λ [ 0 , 1 ] λ [ 0 , 1 ] lambda in[0,1]\lambda \in[0,1]λ[0,1] and y Y y Y y in Yy \in YyY,
F d ( f ) ( λ x ) f ( λ y ) + f | Y , d α d α ( λ x , λ y ) λ α f ( y ) + λ α f | Y , d α d α ( x , y ) = λ α [ f ( y ) + f | Y , d α d α ( x , y ) ] . F d ( f ) ( λ x ) f ( λ y ) + f Y , d α d α ( λ x , λ y ) λ α f ( y ) + λ α f Y , d α d α ( x , y ) = λ α f ( y ) + f Y , d α d α ( x , y ) . {:[F_(d)(f)(lambda x) <= f(lambda y)+||f|_(Y,d)^(alpha)d^(alpha)(lambda x","lambda y)],[ <= lambda^(alpha)f(y)+lambda^(alpha)||f|_(Y,d)^(alpha)d^(alpha)(x","y)],[=lambda^(alpha)[f(y)+||f|_(Y,d)^(alpha)d^(alpha)(x,y)].]:}\begin{aligned} F_{d}(f)(\lambda x) & \leq f(\lambda y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(\lambda x, \lambda y) \\ & \leq \lambda^{\alpha} f(y)+\lambda^{\alpha} \|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(x, y) \\ & =\lambda^{\alpha}\left[f(y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(x, y)\right] . \end{aligned}Fd(f)(λx)f(λy)+f|Y,dαdα(λx,λy)λαf(y)+λαf|Y,dαdα(x,y)=λα[f(y)+f|Y,dαdα(x,y)].
Taking the infimum with respect to y Y y Y y in Yy \in YyY one gets
F d ( f ) ( λ x ) λ α F d ( f ) ( x ) , F d ( f ) ( λ x ) λ α F d ( f ) ( x ) , F_(d)(f)(lambda x) <= lambda^(alpha)F_(d)(f)(x),F_{d}(f)(\lambda x) \leq \lambda^{\alpha} F_{d}(f)(x),Fd(f)(λx)λαFd(f)(x),
for every x X x X x in Xx \in XxX, showing that F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) is α α alpha\alphaα-radiant.
Now, let x X , λ [ 0 , 1 ] x X , λ [ 0 , 1 ] x in X,lambda in[0,1]x \in X, \lambda \in[0,1]xX,λ[0,1], and f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) be α α alpha\alphaα-co-radiant. Then, for every y Y y Y y in Yy \in YyY, by considering the minimal extension G d ( f ) E d ( f ) G d ( f ) E d ( f ) G_(d)(f)inE_(d)(f)G_{d}(f) \in \mathcal{E}_{d}(f)Gd(f)Ed(f) one gets:
G d ( f ) ( λ x ) f ( λ y ) f | Y , d α d α ( λ y , λ x ) λ α f ( y ) λ α f | Y , d α d α ( y , x ) = λ α [ f ( y ) f | Y , d α d α ( y , x ) ] G d ( f ) ( λ x ) f ( λ y ) f Y , d α d α ( λ y , λ x ) λ α f ( y ) λ α f Y , d α d α ( y , x ) = λ α f ( y ) f Y , d α d α ( y , x ) {:[G_(d)(f)(lambda x) >= f(lambda y)-||f|_(Y,d)^(alpha)d^(alpha)(lambda y","lambda x)],[ >= lambda^(alpha)f(y)-lambda^(alpha)||f|_(Y,d)^(alpha)d^(alpha)(y","x)],[=lambda^(alpha)[f(y)-||f|_(Y,d)^(alpha)d^(alpha)(y,x)]]:}\begin{aligned} G_{d}(f)(\lambda x) & \geq f(\lambda y)-\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(\lambda y, \lambda x) \\ & \geq \lambda^{\alpha} f(y)-\lambda^{\alpha} \|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(y, x) \\ & =\lambda^{\alpha}\left[f(y)-\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(y, x)\right] \end{aligned}Gd(f)(λx)f(λy)f|Y,dαdα(λy,λx)λαf(y)λαf|Y,dαdα(y,x)=λα[f(y)f|Y,dαdα(y,x)]
Taking the supremum with respect to y Y y Y y in Yy \in YyY, one obtains
G d ( f ) ( λ x ) λ α G d ( f ) ( x ) , x X G d ( f ) ( λ x ) λ α G d ( f ) ( x ) , x X G_(d)(f)(lambda x) >= lambda^(alpha)G_(d)(f)(x),x in XG_{d}(f)(\lambda x) \geq \lambda^{\alpha} G_{d}(f)(x), x \in XGd(f)(λx)λαGd(f)(x),xX
and the statement 2 0 2 0 2^(0)2^{0}20 is proved.
Finally, if f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) is inverse co-radiant on the radiant set Y Y YYY, then for every y Y y Y y in Yy \in YyY and λ ( 0 , 1 ] λ ( 0 , 1 ] lambda in(0,1]\lambda \in(0,1]λ(0,1], and for the maximal extension F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) one obtains:
F d ( f ) ( x ) f ( λ y ) + f | Y , d α d α ( λ x , λ y ) 1 λ f ( y ) + λ α f | Y , d α d α ( x , y ) = 1 λ [ f ( y ) + λ α + 1 f | Y , d α d α ( x , y ) ] 1 λ [ f ( y ) + f | Y , d α d α ( x , y ) ] . F d ( f ) ( x ) f ( λ y ) + f Y , d α d α ( λ x , λ y ) 1 λ f ( y ) + λ α f Y , d α d α ( x , y ) = 1 λ f ( y ) + λ α + 1 f Y , d α d α ( x , y ) 1 λ f ( y ) + f Y , d α d α ( x , y ) . {:[F_(d)(f)(x) <= f(lambda y)+||f|_(Y,d)^(alpha)d^(alpha)(lambda x","lambda y)],[ <= (1)/(lambda)f(y)+lambda^(alpha)||f|_(Y,d)^(alpha)*d^(alpha)(x","y)],[=(1)/(lambda)[f(y)+lambda^(alpha+1)||f|_(Y,d)^(alpha)d^(alpha)(x,y)]],[ <= (1)/(lambda)[f(y)+||f|_(Y,d)^(alpha)d^(alpha)(x,y)].]:}\begin{aligned} F_{d}(f)(x) & \leq f(\lambda y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(\lambda x, \lambda y) \\ & \leq \frac{1}{\lambda} f(y)+\lambda^{\alpha} \|\left. f\right|_{Y, d} ^{\alpha} \cdot d^{\alpha}(x, y) \\ & =\frac{1}{\lambda}\left[f(y)+\lambda^{\alpha+1} \|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(x, y)\right] \\ & \leq \frac{1}{\lambda}\left[f(y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(x, y)\right] . \end{aligned}Fd(f)(x)f(λy)+f|Y,dαdα(λx,λy)1λf(y)+λαf|Y,dαdα(x,y)=1λ[f(y)+λα+1f|Y,dαdα(x,y)]1λ[f(y)+f|Y,dαdα(x,y)].
Taking the infimum with respect to y Y y Y y in Yy \in YyY it follows
F d ( f ) ( λ x ) 1 λ F d ( f ) ( x ) , x X , F d ( f ) ( λ x ) 1 λ F d ( f ) ( x ) , x X , F_(d)(f)(lambda x) <= (1)/(lambda)F_(d)(f)(x),x in X,F_{d}(f)(\lambda x) \leq \frac{1}{\lambda} F_{d}(f)(x), x \in X,Fd(f)(λx)1λFd(f)(x),xX,
and the statement 3 0 3 0 3^(0)3^{0}30 holds.
Another property preserved by extensions is the global minimum (maximum) of a function f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d).
Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, and let Y X Y X Y sub XY \subset XYX be a nonempty subset of X X XXX. An element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is called a global minimum (maximum) point of f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d) if
f ( y 0 ) f ( y ) ( f ( y 0 ) f ( y ) ) f y 0 f ( y ) f y 0 f ( y ) f(y_(0)) <= f(y)quad(f(y_(0)) >= f(y))f\left(y_{0}\right) \leq f(y) \quad\left(f\left(y_{0}\right) \geq f(y)\right)f(y0)f(y)(f(y0)f(y))
for all y Y y Y y in Yy \in YyY.
Theorem 3. Let ( X , d X , d X,dX, dX,d ) be a quasi-metric space, let Y Y YYY be a nonvoid subset of X X XXX, let y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y, let α ( 0 , 1 ] α ( 0 , 1 ] alpha in(0,1]\alpha \in(0,1]α(0,1], and let f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d). Then the following statements hold:
1 0 1 0 1^(0)1^{0}10 If Y Y YYY is d-closed, then y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is a global minimum point for f f fff in Y Y YYY if and only if y 0 y 0 y_(0)y_{0}y0 is a global minimum point of F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) in X X XXX.
2 0 2 0 2^(0)2^{0}20 If Y Y YYY is d ¯ d ¯ bar(d)\bar{d}d¯-closed, then y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y is a global maximum point for f f fff in Y Y YYY if and only if y 0 y 0 y_(0)y_{0}y0 is a global maximum point of G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) in X X XXX.
Proof. 1 0 1 0 quad1^(0)\quad 1^{0}10 Let y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y be a global minimum point of f Λ α ( Y , d ) f Λ α ( Y , d ) f inLambda_(alpha)(Y,d)f \in \Lambda_{\alpha}(Y, d)fΛα(Y,d). For every y Y y Y y in Yy \in YyY we have
F d ( f ) ( y ) = f ( y ) f ( y 0 ) = F d ( f ) ( y 0 ) . F d ( f ) ( y ) = f ( y ) f y 0 = F d ( f ) y 0 . F_(d)(f)(y)=f(y) >= f(y_(0))=F_(d)(f)(y_(0)).F_{d}(f)(y)=f(y) \geq f\left(y_{0}\right)=F_{d}(f)\left(y_{0}\right) .Fd(f)(y)=f(y)f(y0)=Fd(f)(y0).
If x Y , Y x Y , Y x!in Y,Yx \notin Y, YxY,Y being d d ddd-closed, there exists δ > 0 δ > 0 delta > 0\delta>0δ>0 such that d ( x , y ) > δ d ( x , y ) > δ d(x,y) > deltad(x, y)>\deltad(x,y)>δ for all y Y y Y y in Yy \in YyY. Consequently,
F d ( f ) ( x ) = inf y Y { f ( y ) + f | Y , d α d α ( x , y ) } inf y Y { f ( y ) + f | Y , d α δ α } = f ( y 0 ) + f | Y , d α δ α f ( y 0 ) , F d ( f ) ( x ) = inf y Y f ( y ) + f Y , d α d α ( x , y ) inf y Y f ( y ) + f Y , d α δ α = f y 0 + f Y , d α δ α f y 0 , {:[F_(d)(f)(x)=i n f_(y in Y){f(y)+||f|_(Y,d)^(alpha)d^(alpha)(x,y)}],[ >= i n f_(y in Y){f(y)+||f|_(Y,d)^(alpha)delta^(alpha)}],[=f(y_(0))+||f|_(Y,d)^(alpha)delta^(alpha) >= f(y_(0))","]:}\begin{aligned} F_{d}(f)(x) & =\inf _{y \in Y}\left\{f(y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(x, y)\right\} \\ & \geq \inf _{y \in Y}\left\{f(y)+\|\left. f\right|_{Y, d} ^{\alpha} \delta^{\alpha}\right\} \\ & =f\left(y_{0}\right)+\|\left. f\right|_{Y, d} ^{\alpha} \delta^{\alpha} \geq f\left(y_{0}\right), \end{aligned}Fd(f)(x)=infyY{f(y)+f|Y,dαdα(x,y)}infyY{f(y)+f|Y,dαδα}=f(y0)+f|Y,dαδαf(y0),
so that for every x X , F d ( f ) ( x ) f ( y 0 ) = F d ( f ) ( y 0 ) x X , F d ( f ) ( x ) f y 0 = F d ( f ) y 0 x in X,F_(d)(f)(x) >= f(y_(0))=F_(d)(f)(y_(0))x \in X, F_{d}(f)(x) \geq f\left(y_{0}\right)=F_{d}(f)\left(y_{0}\right)xX,Fd(f)(x)f(y0)=Fd(f)(y0).
Conversely, suppose that y 0 X y 0 X y_(0)in Xy_{0} \in Xy0X is a global minimum point for F d ( f ) F d ( f ) F_(d)(f)F_{d}(f)Fd(f) in X X XXX. If we would show that y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y, then, as F d ( f ) | Y = f F d ( f ) Y = f F_(d)(f)|_(Y)=f\left.F_{d}(f)\right|_{Y}=fFd(f)|Y=f, it would follow that y 0 y 0 y_(0)y_{0}y0 is a global minimum point for f f fff in Y Y YYY.
Case I: f | Y , d α = 0 f Y , d α = 0 ||f|_(Y,d)^(alpha)=0\|\left. f\right|_{Y, d} ^{\alpha}=0f|Y,dα=0.
In this case there exists c R c R c inRc \in \mathbb{R}cR such that f ( y ) = c f ( y ) = c f(y)=cf(y)=cf(y)=c for all y Y y Y y in Yy \in YyY. It follows F d ( f ) | X , d α = 0 F d ( f ) X , d α = 0 ||F_(d)(f)|_(X,d)^(alpha)=0\|\left. F_{d}(f)\right|_{X, d} ^{\alpha}=0Fd(f)|X,dα=0, so that F d ( f ) = F d ( f ) = F_(d)(f)=F_{d}(f)=Fd(f)= const on X X XXX. Since F | Y = f F Y = f F|_(Y)=f\left.F\right|_{Y}=fF|Y=f we must have F d ( f ) ( x ) = F d ( f ) ( x ) = F_(d)(f)(x)=F_{d}(f)(x)=Fd(f)(x)= const , for all x X x X x in Xx \in XxX.
Case II: f | Y , d α > 0 f Y , d α > 0 ||f|_(Y,d)^(alpha) > 0\|\left. f\right|_{Y, d} ^{\alpha}>0f|Y,dα>0.
Let y 0 X y 0 X y_(0)in Xy_{0} \in Xy0X such that F d ( f ) ( y 0 ) F d ( f ) ( x ) F d ( f ) y 0 F d ( f ) ( x ) F_(d)(f)(y_(0)) <= F_(d)(f)(x)F_{d}(f)\left(y_{0}\right) \leq F_{d}(f)(x)Fd(f)(y0)Fd(f)(x), for all x X x X x in Xx \in XxX. Since F d ( f ) ( y 0 ) = inf [ f ( y ) + f | Y , d α d α ( y 0 , y ) ] F d ( f ) y 0 = inf f ( y ) + f Y , d α d α y 0 , y F_(d)(f)(y_(0))=i n f[f(y)+||f|_(Y,d)^(alpha)d^(alpha)(y_(0),y)]F_{d}(f)\left(y_{0}\right)=\inf \left[f(y)+\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}\left(y_{0}, y\right)\right]Fd(f)(y0)=inf[f(y)+f|Y,dαdα(y0,y)], for every n N n N n inNn \in \mathbb{N}nN there exist y n Y y n Y y_(n)in Yy_{n} \in YynY such that
f ( y n ) + d α ( y 0 , y n ) f | Y , d α < F d ( f ) ( y 0 ) + f | Y , d α n α f y n + d α y 0 , y n f Y , d α < F d ( f ) y 0 + f Y , d α n α f(y_(n))+d^(alpha)(y_(0),y_(n))||f|_(Y,d)^(alpha) < F_(d)(f)(y_(0))+(||f|_(Y,d)^(alpha))/(n^(alpha))f\left(y_{n}\right)+d^{\alpha}\left(y_{0}, y_{n}\right) \|\left. f\right|_{Y, d} ^{\alpha}<F_{d}(f)\left(y_{0}\right)+\frac{\|\left. f\right|_{Y, d} ^{\alpha}}{n^{\alpha}}f(yn)+dα(y0,yn)f|Y,dα<Fd(f)(y0)+f|Y,dαnα
The inequalities F d ( f ) ( y 0 ) F d ( f ) ( y n ) = f ( y n ) F d ( f ) y 0 F d ( f ) y n = f y n F_(d)(f)(y_(0)) <= F_(d)(f)(y_(n))=f(y_(n))F_{d}(f)\left(y_{0}\right) \leq F_{d}(f)\left(y_{n}\right)=f\left(y_{n}\right)Fd(f)(y0)Fd(f)(yn)=f(yn), imply f ( y n ) + f | Y , d α d α ( y 0 , y n ) < f ( y n ) + f | Y , d α n α f y n + f Y , d α d α y 0 , y n < f y n + f Y , d α n α f(y_(n))+||f|_(Y,d)^(alpha)d^(alpha)(y_(0),y_(n)) < f(y_(n))+||f|_(Y,d)^(alpha)n^(-alpha)f\left(y_{n}\right)+ \left.\left\|\left.f\right|_{Y, d} ^{\alpha} d^{\alpha}\left(y_{0}, y_{n}\right)<f\left(y_{n}\right)+\right\| f\right|_{Y, d} ^{\alpha} n^{-\alpha}f(yn)+f|Y,dαdα(y0,yn)<f(yn)+f|Y,dαnα, so that d ( y 0 , y n ) < 1 n , n N d y 0 , y n < 1 n , n N d(y_(0),y_(n)) < (1)/(n),n inNd\left(y_{0}, y_{n}\right)<\frac{1}{n}, n \in \mathbb{N}d(y0,yn)<1n,nN, i.e., d ( y 0 , y n ) 0 d y 0 , y n 0 d(y_(0),y_(n))rarr0d\left(y_{0}, y_{n}\right) \rightarrow 0d(y0,yn)0. The sequence ( y n ) n 1 y n n 1 (y_(n))_(n >= 1)\left(y_{n}\right)_{n \geq 1}(yn)n1 in Y Y YYY is d d ddd-convergent to y 0 y 0 y_(0)y_{0}y0, and since Y Y YYY is d d ddd-closed, y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y.
2 0 2 0 2^(0)2^{0}20 Let y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y be a global maximum point of f Λ α ( Y ) f Λ α ( Y ) f inLambda_(alpha)(Y)f \in \Lambda_{\alpha}(Y)fΛα(Y).
Then for every y Y y Y y in Yy \in YyY,
G d ( f ) ( y ) = f ( y ) f ( y 0 ) = G d ( f ) ( y 0 ) . G d ( f ) ( y ) = f ( y ) f y 0 = G d ( f ) y 0 . G_(d)(f)(y)=f(y) <= f(y_(0))=G_(d)(f)(y_(0)).G_{d}(f)(y)=f(y) \leq f\left(y_{0}\right)=G_{d}(f)\left(y_{0}\right) .Gd(f)(y)=f(y)f(y0)=Gd(f)(y0).
If x Y , Y x Y , Y x!in Y,Yx \notin Y, YxY,Y being d ¯ d ¯ bar(d)\bar{d}d¯-closed, there exists η > 0 η > 0 eta > 0\eta>0η>0 such that d ¯ ( x , y ) > η d ¯ ( x , y ) > η bar(d)(x,y) > eta\bar{d}(x, y)>\etad¯(x,y)>η (i.e. d ( y , x ) > η d ( y , x ) > η d(y,x) > etad(y, x)>\etad(y,x)>η ) for all y Y y Y y in Yy \in YyY. Therefore
G d ( f ) ( x ) = sup y Y { f ( y ) f | Y , d α d ¯ α ( x , y ) } = sup y Y { f ( y ) f | Y , d α d α ( y , x ) } sup y Y { f ( y ) f | Y , d α η α } f ( y 0 ) f | Y , d α η α f ( y 0 ) G d ( f ) ( x ) = sup y Y f ( y ) f Y , d α d ¯ α ( x , y ) = sup y Y f ( y ) f Y , d α d α ( y , x ) sup y Y f ( y ) f Y , d α η α f y 0 f Y , d α η α f y 0 {:[G_(d)(f)(x)=s u p_(y in Y){f(y)-||f|_(Y,d)^(alpha) bar(d)^(alpha)(x,y)}],[=s u p_(y in Y){f(y)-||f|_(Y,d)^(alpha)d^(alpha)(y,x)}],[ <= s u p_(y in Y){f(y)-||f|_(Y,d)^(alpha)eta^(alpha)}],[ <= f(y_(0))-||f|_(Y,d)^(alpha)eta^(alpha) <= f(y_(0))]:}\begin{aligned} G_{d}(f)(x) & =\sup _{y \in Y}\left\{f(y)-\|\left. f\right|_{Y, d} ^{\alpha} \bar{d}^{\alpha}(x, y)\right\} \\ & =\sup _{y \in Y}\left\{f(y)-\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}(y, x)\right\} \\ & \leq \sup _{y \in Y}\left\{f(y)-\|\left. f\right|_{Y, d} ^{\alpha} \eta^{\alpha}\right\} \\ & \leq f\left(y_{0}\right)-\|\left. f\right|_{Y, d} ^{\alpha} \eta^{\alpha} \leq f\left(y_{0}\right) \end{aligned}Gd(f)(x)=supyY{f(y)f|Y,dαd¯α(x,y)}=supyY{f(y)f|Y,dαdα(y,x)}supyY{f(y)f|Y,dαηα}f(y0)f|Y,dαηαf(y0)
It follows that G d ( f ) ( x ) f ( y 0 ) G d ( f ) ( x ) f y 0 G_(d)(f)(x) <= f(y_(0))G_{d}(f)(x) \leq f\left(y_{0}\right)Gd(f)(x)f(y0), for all x X x X x in Xx \in XxX.
Conversely, suppose that y 0 X y 0 X y_(0)in Xy_{0} \in Xy0X is a global maximum point for G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) in X X XXX.
Case I f | Y , d α = 0 f Y , d α = 0 ||f|_(Y,d)^(alpha)=0\|\left. f\right|_{Y, d} ^{\alpha}=0f|Y,dα=0.
In this case, because f = G d ( f ) | Y f = G d ( f ) Y f=G_(d)(f)|_(Y)f=\left.G_{d}(f)\right|_{Y}f=Gd(f)|Y and G d ( f ) | X , d α = f | Y , d α = 0 G d ( f ) X , d α = f Y , d α = 0 ||G_(d)(f)|_(X,d)^(alpha)=||f|_(Y,d)^(alpha)=0\left.\left\|\left.G_{d}(f)\right|_{X, d} ^{\alpha}=\right\| f\right|_{Y, d} ^{\alpha}=0Gd(f)|X,dα=f|Y,dα=0 it follows that f f fff and G d ( f ) G d ( f ) G_(d)(f)G_{d}(f)Gd(f) are equal with the same constant.
Case II f | Y , d α > 0 f Y , d α > 0 ||f|_(Y,d)^(alpha) > 0\|\left. f\right|_{Y, d} ^{\alpha}>0f|Y,dα>0.
Let y 0 X y 0 X y_(0)in Xy_{0} \in Xy0X such that G d ( f ) ( y 0 ) > G d ( f ) ( x ) , x X G d ( f ) y 0 > G d ( f ) ( x ) , x X G_(d)(f)(y_(0)) > G_(d)(f)(x),x in XG_{d}(f)\left(y_{0}\right)>G_{d}(f)(x), x \in XGd(f)(y0)>Gd(f)(x),xX.
Since
G d ( f ) ( y 0 ) = sup y Y [ f ( y ) f | Y , d α d α ( y , y 0 ) ] G d ( f ) y 0 = sup y Y f ( y ) f Y , d α d α y , y 0 G_(d)(f)(y_(0))=s u p_(y in Y)[f(y)-||f|_(Y,d)^(alpha)d^(alpha)(y,y_(0))]G_{d}(f)\left(y_{0}\right)=\sup _{y \in Y}\left[f(y)-\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}\left(y, y_{0}\right)\right]Gd(f)(y0)=supyY[f(y)f|Y,dαdα(y,y0)]
for every n N n N n inNn \in \mathbb{N}nN, there exists y n Y y n Y y_(n)in Yy_{n} \in YynY such that
f ( y n ) f | Y , d α d α ( y n , y 0 ) > G d ( f ) ( y 0 ) f | Y , d α n α f y n f Y , d α d α y n , y 0 > G d ( f ) y 0 f Y , d α n α f(y_(n))-||f|_(Y,d)^(alpha)d^(alpha)(y_(n),y_(0)) > G_(d)(f)(y_(0))-(||f|_(Y,d)^(alpha))/(n^(alpha))f\left(y_{n}\right)-\|\left. f\right|_{Y, d} ^{\alpha} d^{\alpha}\left(y_{n}, y_{0}\right)>G_{d}(f)\left(y_{0}\right)-\frac{\|\left. f\right|_{Y, d} ^{\alpha}}{n^{\alpha}}f(yn)f|Y,dαdα(yn,y0)>Gd(f)(y0)f|Y,dαnα
The inequalities G d ( f ) ( y 0 ) G d ( f ) ( y n ) = f ( y n ) G d ( f ) y 0 G d ( f ) y n = f y n G_(d)(f)(y_(0)) >= G_(d)(f)(y_(n))=f(y_(n))G_{d}(f)\left(y_{0}\right) \geq G_{d}(f)\left(y_{n}\right)=f\left(y_{n}\right)Gd(f)(y0)Gd(f)(yn)=f(yn), imply f ( y n ) f | Y , d α d α ( y n , y 0 ) > f ( y n ) 1 n α f | Y , d α f y n f Y , d α d α y n , y 0 > f y n 1 n α f Y , d α f(y_(n))-||f|_(Y,d)^(alpha)d^(alpha)(y_(n),y_(0)) > f(y_(n))-(1)/(n^(alpha))||f|_(Y,d)^(alpha)f\left(y_{n}\right)-\left.\left\|\left.f\right|_{Y, d} ^{\alpha} d^{\alpha}\left(y_{n}, y_{0}\right)>f\left(y_{n}\right)-\frac{1}{n^{\alpha}}\right\| f\right|_{Y, d} ^{\alpha}f(yn)f|Y,dαdα(yn,y0)>f(yn)1nαf|Y,dα, so that d ( y n , y 0 ) < 1 n , n N d y n , y 0 < 1 n , n N d(y_(n),y_(0)) < (1)/(n),n inNd\left(y_{n}, y_{0}\right) <\frac{1}{n}, n \in \mathbb{N}d(yn,y0)<1n,nN, i.e., d ( y n , y 0 ) 0 d y n , y 0 0 d(y_(n),y_(0))rarr0d\left(y_{n}, y_{0}\right) \rightarrow 0d(yn,y0)0. This means that the sequence ( y n ) n 1 y n n 1 (y_(n))_(n >= 1)\left(y_{n}\right)_{n \geq 1}(yn)n1 is d ¯ d ¯ bar(d)\bar{d}d¯-convergent to y 0 y 0 y_(0)y_{0}y0. Since Y Y YYY is d ¯ d ¯ bar(d)\bar{d}d¯-closed, y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y.
Remark 3. By Theorem 2.6 in [14], it follows that every f Λ α , 0 ( Y , d ) f Λ α , 0 ( Y , d ) f inLambda_(alpha,0)(Y,d)f \in \Lambda_{\alpha, 0}(Y, d)fΛα,0(Y,d) is lower semicontinuous on ( Y , d α Y , d α Y,d^(alpha)Y, d^{\alpha}Y,dα ) and attains its minimum on Y Y YYY, provided that Y Y YYY is d α d α d^(alpha)d^{\alpha}dα-sequentially compact. Also, every f Λ α , 0 ( Y , d ) f Λ α , 0 ( Y , d ) f inLambda_(alpha,0)(Y,d)f \in \Lambda_{\alpha, 0}(Y, d)fΛα,0(Y,d) is upper semicontinuous on ( Y , d α Y , d α ¯ Y, bar(d^(alpha))Y, \overline{d^{\alpha}}Y,dα ) and attains its maximum value on Y Y YYY whenever Y Y YYY is d α d α ¯ bar(d^(alpha))\overline{d^{\alpha}}dα-sequentially compact.
If Y Y YYY is ( d α , d α ) d α , d α ¯ (d^(alpha), bar(d^(alpha)))\left(d^{\alpha}, \overline{d^{\alpha}}\right)(dα,dα)-sequentially compact and ( X , d α X , d α X,d^(alpha)X, d^{\alpha}X,dα ) is a T 1 T 1 T_(1)T_{1}T1-topological space, every f Λ α , 0 ( Y , d ) f Λ α , 0 ( Y , d ) f inLambda_(alpha,0)(Y,d)f \in \Lambda_{\alpha, 0}(Y, d)fΛα,0(Y,d) attains both the global minimum and the global maximum on Y Y YYY. Moreover, the sequential method for the calculation of the global extremum (maximum and/or minimum) of f f fff, ([14], Th. 3.1) is applicable.

Acknowledgements

I would like to thank the referees for the valuable suggestions in improving the structure of the paper.

References

[1] Breckner, W.W.: Hölder continuity of certain generalized convex functions. Optimization 28, 201-209 (1994)
[2] Cobzaş, S.: Functional analysis in asymmetric normed spaces, arXiv:1006. 1175 v 1.
[3] Collins, J., Zimmer, J.: An asymmetric Arzelà-Ascoli theorem. Topol. Appl. 154, 2312-2322 (2007)
[4] Doagooei, A.R., Mohebi, H.: Optimization of the difference of ICR functions. Nonlinear Anal. Theor. Method Appl. 71, 4493-4499 (2009)
[5] Flecther, P., Lindgren, W.F.: Quasi-uniform spaces. Dekker, New York (1982)
[6] Krein, M.G., Nudel'man, A.A.: The Markov moment problem and extremum problems, Nauka, Moscow 1973 (in Russian), English translation . American Mathematical Society, Providence (1977)
[7] Künzi, H.-P.A: Nonsymmetric distances and their associated topologies: about the origin of basic ideas in the area of asymmetric topology. In: Aull, C.E., Lowen, R. Handbook of the history of general topology, pp. 853-968. Kluwer Academic Publishers, Dordrecht (2001)
[8] Martinez-Legaz, J.E., Rubinov, A.M., Schaible, S.: Increasing quasi-concave coradiant functions with applications in mathematical economics. Math. Oper. Res. 61, 261-280 (2005)
[9] Matouškova, E.: Extensions of continuous and Lipschitz functions. Canad. Math. Bull. 43(2), 208-217 (2000)
[10] McShane, E.T.: Extension of range of functions. Bull. Am. Math. Soc. 40, 837-842 (1934)
[11] Mennucci, A.: On asymmetric distances, Tech. Rep. Scuola Normale Superiore, Pisa (2004)
[12] Mustăţa, C.: Extension of semi-Lipschitz functions on quasi-metric spaces. Rev. Anal. Numér. Théor. Approx. 30, 61-67 (2001)
[13] Mustăţa, C.: A Phelps type theorem for spaces with asymmetric norms. Bull. Stiinţ. Univ. Baia Mare, Ser. B. Matematică-Informatică 18, 275-280 (2002)
[14] Mustăţa, C.: On the approximation of the global extremum of a semi-Lipschitz function. Mediterr. J. Math. 6, 169-180 (2009)
[15] Mustăţa, C.: Extensions of semi-Hölder real valued functions on a quasi-metric space. Rev. Anal. Numér. Théor. Approx. 38, 164-169 (2009)
[16] Phelps, R.R.: Uniqueness of Hahn-Banach extension and unique best approximation. Trans. Am. Math. Soc. 95, 238-255 (1960)
[17] Romaguera, S., Sanchis, M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theor. 103, 292-301 (2000)
[18] Romaguera, S., Sanchis, M.: Properties of the normed cone of semi-Lipschitz functions. Acta Math. Hungar 108, 55-70 (2005)
C. Mustăţa
"T. Popoviciu" Institute of Numerical Analysis
P.O. Box 68-1
Cluj-Napoca, Romania
e-mail: cmustata2001@yahoo.com
cmustata@ictp.acad.ro
Received: May 2, 2011.
Accepted: September 12, 2011.
2013

Related Posts