Abstract
In this paper we deal with nontrivial solvability in balls of Hammerstein integral equations in Hilbert spaces for nonlinearities of potential type. We use a variational approach based on variants of the mountain pass theorem which are due to Guo-Sun-Qi and Schechter. Our main contribution is a new technique to verify compactness conditions of Palais-Smale type. This technique combines the compactness criterium for countable sets in \(L^p\) with basic properties of the measures of noncompactness and integral inequalities.
Authors
Radu Precup
Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania
Keywords
Compactness; Hammerstein integral equation; Mountain pass theory.
Paper cordinates
R. Precup, On the Palais-Smale condition for Hammerstein integral equations in Hilbert spaces, Nonlinear Anal. 47 (2001), 1233-1244. http://dx.doi.org/10.1016/S0362-546X(01)00261-9
About this paper
Cite this paper as:
Journal
Nonlinear Analysis
Publisher Name
Elsevier
Print ISSN
Not available yet.
Online ISSN
0362-546X
Google Scholar Profile
Zbl 1042.47530
References
[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applicaitons, J. Funct. Anal. 14, 349-381, 1973.
[2] H. Brezis, Analyse fonctionnelle, Mason, Paris, 1983.
[3] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear integral equations in abstract spaces, Kluwer Academic Publisher, Dordrecht, 1996.
[4] D. Guo, J. Sun, G. Qi, Some extensions of the mountain pass lemma, Differential Integral Equations 1, 351-358, 1988.
[5] O. Kavian, Introduction a le theorie des points critiques, Springer, Berlin, 1995.
[6] M.A. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, Oxford, 1964.
[7] J. Mawhin, M. Willem, Critical point theorem and Hamiltonian system, Springer-Verlag, Berlin, 1989.
[8] V. Moroz, A. Vignoli, P. Zabvreiko, On the three critical points theorem, Topol. Methods Nonlinear Anal. 11, 103-113, 1998.
[9] V.B.Moroz, P.P. Zabreiko, A variant of the mountain pass theorem and its application to Hammerstein integral equations, Zeit. Anal. Anwendungen 15, 985-997, 1996.
[10] D. O’Regan, R. Precup, Existence criteria for integral equations in Banasch spaces, J. Inequal. Appl., to appear.
[11] R. Precup, Nonlinear integral equations (In Romanian), University Babes-Bolyai, Cluj, 1993.
[12] R. Precup, Nontrivial solvability of Hammerstein integral equations in Hilbert spaces, Seminaire de la theorie de la meilleure approximation, convexite et optimisation, Srima, Cluj-Napoca, 255-265, 2000.
[13] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applciations, Trans. Amer. Math. Soc., 331, 681-703, 1992.