On the qualitative properties of functional integral equations with abstract Volterra operators

Abstract

Using the weakly Picard operators technique we establish existence, data dependence and comparison results of solutions for a functional integral equation with abstract Volterra operators. Some examples which show the importance of our results are also included.

Authors

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,
Technical University of Cluj-Napoca)

V. Ilea
(Babes-Bolyai Univ.)

Keywords

Functional integral equation, weakly Picard operators, data dependence and abstract Volterra operator

Cite this paper as:

D. Otrocol, V. Ilea, On the qualitative properties of functional integral equations with abstract Volterra operators, Res. Fixed Point Theory Appl., Vol. 2018 (2018), Article ID 201813, 08 pages,
https://doi.org/10.30697/rfpta-2018-13

PDF

About this paper

Journal

 Results in Fixed Point Theory and Applications

Publisher Name
DOI

https://doi.org/10.30697/rfpta-2018-13

Print ISSN

2581-6047

Online ISSN
MR
ZBL

Google Scholar

[1] R.P. Agarwal, S. Arshad, V. Lupulescu, D. O’Regan, Evolution equations with causal operators, Differ. Equ. Appl. 7 (2015) No. 1 15-26.

[2] N.V. Azbelev (ed), Functional-differential equations (Russian), Perm. Politekh. Inst., Perm, 1985.

[3] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.

[4] C. Corduneanu, Abstract Volterra equations (a survey), Math. Comput. Modelling 32 (2000) 1503- 1528.

[5] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, 1996.

[6] V.A. Ilea, D. Otrocol, An application of the Picard operator technique to functional integral equations, J. Nonlinear Convex Anal. 18 (2017) No. 3 405-413

[7] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publisers, 1992.

[8] V. Lupulescu, Causal functional differential equations in Banach spaces, Nonlinear Anal. 69 (2008) No. 12 4787-4795.

[9] V. Muresan, Some results on the solutions of a functional-integral equation, Stud. Univ. Babes-Bolyai Math. 56 (2011) No. 4 157-164.

[10] D. O’Regan, A note on the topological structure of the solution set of abstract Volterra equations, Mathematical Proceedings of the Royal Irish Academy 99A (1999) No. 1 67-74.

[11] D. Otrocol, Abstract Volterra operators, Carpathian J. Math. 24 (2008) No. 3 370-377.

[12] D. Otrocol, V.A. Ilea, Qualitative properties of a functional differential equation, Electron. J. Qual. Theory Differ. Equ. (2014) No. 47 1-8.

[13] S. Reich, A.J. Zaslavski, Almost all nonexpansive mappings are contractive, C.R. Math. Rep. Acad. Sci. Canada 22 (2000) 118-124

[14] S. Reich, A.J. Zaslavski, The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings, C.R. Acad. Sci. Paris Ser. I Math. 333 (2001) 539-544.

[15] I.A. Rus, Picard operators and applications, Sci. Math. Jpn. 58 (2003) No. 1 191-219.

[16] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.

[17] M.A. Serban, Data dependence for some functional-integral equations, J. Appl. Math. 1 (2008) No. 1 219-234.

[18] M.A. Serban, I.A. Rus, A. Petrusel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Inequal. Appl. 13 (2010) 255-269.

On the qualitative properties of functional integral equations with abstract Volterra operators

Diana Otrocol and Veronica Ilea
Abstract.

Using the weakly Picard operators technique we establish existence, data dependence and comparison results of solutions for a functional integral equation with abstract Volterra operators. Some examples which show the importance of our results are also included.
MSC 2010: 47H10, 34K05.
Keywords: Functional integral equation, weakly Picard operators, data dependence, abstract Volterra operator.

Technical University of Cluj-Napoca, Memorandumului St. 28, 400114, Cluj-Napoca, Romania
”T. Popoviciu” Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania
“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, St. M. Kogălniceanu No. 1, RO-400084 Cluj-Napoca, Romania

1. Introduction and preliminaries

It is well known that functional integral equations of different types find numerous applications in describing real-world problems which appear in mechanics, physics, engineering, biology, see for example [2], [3]-[5] and [7].

The purpose of this paper is to study existence, data dependence and comparison results for the solutions of the functional integral equation of the form

(1.1) x(t)=F(t,h(x)(t),x(0))+0tK(x)(s)𝑑s,t[0,b].x(t)=F(t,h(x)(t),x(0))+\int\nolimits_{0}^{t}K(x)(s)ds,\ t\in[0,b].

using the weakly Picard operators technique. The theory of Picard operators was introduced by I. A. Rus (see [15]-[16] and their references) to study problems related to fixed point theory. This abstract approach is used by many mathematicians and it seemed to be a very useful and powerful method in the study of integral equations and inequalities, ordinary and partial differential equations (existence, uniqueness, differentiability of the solutions), etc.

Our results extend and improve corresponding theorems in the existing literature (see, e.g. [17], [18], [9], [11], [12] and [6]). Some properties of the solutions to differential and integral equations with abstract Volterra operators were studied, for example, in [1], [8] and [10].

In this paper we use the terminologies and notations from [15]-[16]. Let us recall now some essential definitions and fundamental results.

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. We denote byA0=1X,A1=A,An+1:=AAn,n\;A^{0}=1_{X},\;A^{1}=A,\;A^{n+1}:=A\circ A^{n},n\in\mathbb{N} the iterates of the operator AA;

We also use the following notations:

FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed points set of AA;

I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subsets of AA.

We begin with the definitions of a Picard and weakly Picard operator.

Definition 1.1.

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a Picard operator (PO) if there exists xXx^{\ast}\in X such that FA={x}F_{A}=\{x^{\ast}\} and the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{\ast} for all x0Xx_{0}\in X.

Definition 1.2.

Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges for all xXx\in X, and its limit ( which may depend on xx ) is a fixed point of AA.

Definition 1.3.

If AA is a weakly Picard operator then we consider the operator AA^{\infty} defined by A:XX,A(x):=limnAn(x)A^{\infty}:X\rightarrow X,\ A^{\infty}(x):=\underset{n\rightarrow\infty}{\lim}A^{n}(x).

Remark 1.4.

It is clear that A(X)=FA.A^{\infty}(X)=F_{A}.

In the sequel, the following results are useful for some of the proofs in the paper.

Lemma 1.5.

Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA:X\rightarrow X an operator. We suppose that AA is WPO and AA is increasing. Then, the operator AA^{\infty} is increasing.

Lemma 1.6.

(Abstract Gronwall lemma) Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA:X\rightarrow X an operator. We suppose that AA is WPO and AA is increasing. Then:

  • (a)

    xA(x)xA(x);x\leq A(x)\Longrightarrow x\leq A^{\infty}(x);

  • (b)

    xA(x)xA(x).x\geq A(x)\Longrightarrow x\geq A^{\infty}(x).

Lemma 1.7.

(Abstract comparison lemma) Let (X,d,)(X,d,\leq) an ordered metric space and A,B,C:XXA,B,C:X\rightarrow X be such that: (i)(i) the operators A,B,CA,B,C are WPOs; (ii)(ii) ABCA\leq B\leq C; (iii)(iii) the operator BB is increasing. Then xyzx\leq y\leq z implies that A(x)B(y)C(z)A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).

Another important notion is

Definition 1.8.

Let (X,d)(X,d) be a metric space, A:XXA:X\rightarrow X be a weakly Picard operator and c+.c\in\mathbb{R}_{+}^{\ast}. The operator AA\ is cc-weakly Picard operator iff

d(x,A(x))cd(x,A(x)),xX.d(x,A^{\infty}(x))\leq cd(x,A(x)),\ \forall x\in X.

For the cc-POs and cc-WPOs we have

Lemma 1.9.

Let (X,d)(X,d) be a metric space, A,B:XXA,B:X\rightarrow X be two operators. We suppose that:

  • (i)

    the operators AA and BB are cc-WPOs;

  • (ii)

    there exists η+\eta\in\mathbb{R}_{+}^{\ast} such that d(A(x),B(x))η,xX.d(A(x),B(x))\leq\eta,\ \forall x\in X.

Then Hd(FA,FB)cηH_{d}(F_{A},F_{B})\leq c\eta, where HdH_{d} stands for the Pompeiu-Hausdorff functional with respect to dd.

We note that most operators in the space of nonexpansive operators are (weakly) Picard operators. See, for example, the two papers by S. Reich and A. J. Zaslavski [13] and [14]. For some examples of WPOs see [15]-[18].

2. Main results

Let (𝔹,+,,||)(\mathbb{B},+,\mathbb{R},\left|\cdot\right|) be a Banach space. We consider the equation (1.1) in the following conditions:

  • (C1)

    FC([0,b]×𝔹×𝔹,𝔹);F\in C([0,b]\times\mathbb{B\times B},\mathbb{B)};

  • (C2)

    h:C([0,b],𝔹)𝔹h:C([0,b],\mathbb{B)\rightarrow B} is an abstract Volterra operator and there exists Lh>0L_{h}>0 such that

    |h(x)(t)h(y)(t)|Lh|x(t)y(t)|,\left|h(x)(t)-h(y)(t)\right|\leq L_{h}\left|x(t)-y(t)\right|,

    x,yC([0,b],𝔹),t[0,b];\forall x,y\in C([0,b],\mathbb{B)},\ t\in[0,b];

  • (C3)

    K:C([0,b],𝔹)𝔹K:C([0,b],\mathbb{B)\rightarrow B} is an abstract Volterra operator and there exists LK>0L_{K}>0 such that

    |K(x)(t)K(y)(t)|LK|x(t)y(t)|,\left|K(x)(t)-K(y)(t)\right|\leq L_{K}\left|x(t)-y(t)\right|,

    x,yC([0,b],𝔹),t[0,b];\forall x,y\in C([0,b],\mathbb{B)},\ t\in[0,b];

  • (C4)

    there exists 0<LF<10<L_{F}<1 such that

    |F(t,u,λ)F(t,v,λ)|LF|uv|,\left|F(t,u,\lambda)-F(t,v,\lambda)\right|\leq L_{F}\left|u-v\right|,

    u,v𝔹,t,λ[0,b];\forall u,v\in\mathbb{B},\ t,\lambda\in[0,b];

  • (C5)

    F(0,h(x)(0),x(0))=x(0);F(0,h(x)(0),x(0))=x(0);

  • (C6)

    there exists β𝔹\beta\in\mathbb{B} such that

    h(x)(0)=β, xC([0,b],𝔹).h(x)(0)=\beta,\text{ }\forall x\in C([0,b],\mathbb{B)}.

With respect to the equation (1.1) we consider the equation (in λ𝔹\lambda\in\mathbb{B})

(2.1) λ=F(0,β,λ).\lambda=F(0,\beta,\lambda).

Let SFS_{F} be the solution set of the equation (2.1).

In what follows we consider the space X:=(C([0,b],𝔹),τ),X:=(C([0,b],\mathbb{B)},\left\|\cdot\right\|_{\tau}), where τ\left\|\cdot\right\|_{\tau} is the Bielecki norm defined by xτ=max|x(t)|eτt,τ>0\left\|x\right\|_{\tau}=\max\left|x(t)\right|e^{-\tau t},\ \tau>0, and the operator A:XXA:X\rightarrow X be defined by

A(x)(t)=F(t,h(x)(t),x(0))+0tK(x)(s)𝑑s,t[0,b].A(x)(t)=F(t,h(x)(t),x(0))+\int\nolimits_{0}^{t}K(x)(s)ds,\ t\in[0,b].

Let Xλ={xC([0,b],𝔹)|x(0)=λ}.X_{\lambda}=\{x\in C([0,b],\mathbb{B)}|\ x(0)=\lambda\}. Notice that X=λ𝔹X=\underset{\lambda\in\mathbb{B}}{\cup} XλX_{\lambda} is a partition of XX and we have the following lemma (see [17]).

Lemma 2.1.

We have

  • (i)

    If xFA,x\in F_{A}, then x(0)SF;x(0)\in S_{F};

  • (ii)

    FAXλλSF.F_{A}\cap X_{\lambda}\neq\emptyset\Rightarrow\lambda\in S_{F}.

Our first main result is the following. We aim to prove an existence theorem for the solution of equation (1.1).

Theorem 2.2.

If the conditions (C1)(C6)(C_{1})-(C_{6}) are satisfied, then equation (1.1) has a solution in C([0,b],𝔹)C([0,b],\mathbb{B)}. Moreover, A|λ𝕊FXλ:λ𝕊FXλλ𝕊FA|_{\underset{\lambda\in\mathbb{S}_{F}}{\cup}X_{\lambda}}:\underset{\lambda\in\mathbb{S}_{F}}{\cup}X_{\lambda}\rightarrow\underset{\lambda\in\mathbb{S}_{F}}{\cup} XλX_{\lambda} is a WPO and cardFA=cardSFcard\ F_{A}=card\ S_{F}.

Proof.

We denote by Aλ:=A|Xλ:XλXλ,λSF.A_{\lambda}:=A|_{X_{\lambda}}:X_{\lambda}\rightarrow X_{\lambda},\ \lambda\in S_{F}.\ From (C1)(C6)(C_{1})-(C_{6}) we have

|Aλ(x)(t)Aλ(y)(t)|\displaystyle\left|A_{\lambda}(x)(t)-A_{\lambda}(y)(t)\right| LFLhxyeτt+LKτxyeτt\displaystyle\leq L_{F}L_{h}\left\|x-y\right\|e^{\tau t}+\tfrac{L_{K}}{\tau}\left\|x-y\right\|e^{\tau t}
(LFLh+LKτ)xyeτt,\displaystyle\leq(L_{F}L_{h}+\tfrac{L_{K}}{\tau})\left\|x-y\right\|e^{\tau t},

and therefore

Aλ(x)Aλ(y)(LFLh+LKτ)xy,x,yC([0,b],𝔹).\left\|A_{\lambda}(x)-A_{\lambda}(y)\right\|\leq\left(L_{F}L_{h}+\tfrac{L_{K}}{\tau}\right)\left\|x-y\right\|,\ \forall x,y\in C([0,b],\mathbb{B)}.

For a suitable choice of τ\tau, the operator A|XλA|_{X_{\lambda}} is a contraction with respect to τ.\left\|\cdot\right\|_{\tau}.\ From the fact that AλA_{\lambda} with λSF\lambda\in S_{F} is PO and from Lemma 2.1 we have that cardFA=cardSFcard\ F_{A}=card\ S_{F}. Moreover, from the characterization theorem of WPOs (see [15]) we get that AA is a WPO. ∎

Next we shall study some comparison results for the solution to the equation (1.1).

Theorem 2.3.

We consider the equation (1.1) such that all the assumptions to the Theorem 2.2 hold. In addition, we suppose that:

  • (i)

    𝔹\mathbb{B} is an ordered Banach space;

  • (ii)

    the operators F(t,,):𝔹×𝔹𝔹,h,K:F(t,\cdot,\cdot):\mathbb{B\times B}\rightarrow\mathbb{B},\ h,K: 𝔹𝔹\mathbb{B}\rightarrow\mathbb{B} are increasing, t[0,b]\forall t\in[0,b];

Let xx and yy be two solutions to the equation (1.1). If x(0)y(0) then x(t)y(t)x(0)\leq y(0)\text{ then }x(t)\leq y(t) for all t[0,b]t\in[0,b].

Proof.

We remark that xXx(0)x\in X_{x(0)} and yXy(0).y\in X_{y(0)}. If x𝔹,x\in\mathbb{B}, then we denote by x~\widetilde{x} the constant function

x~:𝔹𝔹,x~(t)=x,t[0,b].\widetilde{x}:\mathbb{B\rightarrow B},\ \widetilde{x}(t)=x,\ \forall t\in[0,b].

From x~(0)Xx(0)\widetilde{x}(0)\in X_{x(0)} and y~(0)Xy(0)\widetilde{y}(0)\in X_{y(0)} we have that

x=A(x~(0)),y=A(y~(0)).x=A^{\infty}(\widetilde{x}(0)),\ y=A^{\infty}(\widetilde{y}(0)).

From (C1)(C6)(C_{1})-(C_{6}) the operator AA is a WPO and from (ii)(ii) the operator AA is increasing. Applying the Lemma 1.5 we obtain that AA^{\infty} is increasing. From the Theorem 2.2 we have that A(X)XA(X)\subset X. A|XA|_{X} is a contraction and since x~X\widetilde{x}\in X then

A(x~)=A(x),xX.A^{\infty}(\widetilde{x})=A^{\infty}(x),\ \forall x\in X.

Let xA(x)x\leq A(x), since AA is increasing, from the Gronwall lemma (Lemma 1.6) we get xA(x).x\leq A^{\infty}(x). Also, x,x~(0)Xx(0)x,\widetilde{x}(0)\in X_{x(0)}, so A(x)=A(x~(0)).A^{\infty}(x)=A^{\infty}(\widetilde{x}(0)). But x(0)y(0)x(0)\leq y(0), AA^{\infty} is increasing and A(y~(0))=A(y)=y.A^{\infty}(\widetilde{y}(0))=A^{\infty}(y)=y. So,

xA(x)=A(x~(0))A(y~(0))=y.x\leq A^{\infty}(x)=A^{\infty}(\widetilde{x}(0))\leq A^{\infty}(\widetilde{y}(0))=y.

So the proof is completed. ∎

In the following part of this section we study the order preserving property of the equation (1.1) with respect to K.K. For this we use the Lemma 1.7.

Theorem 2.4.

Let FiC([0,b]×𝔹,𝔹),h,KiC([0,b],𝔹),i{1,2,3}F_{i}\in C([0,b]\times\mathbb{B},\mathbb{B}),\ h,K_{i}\in C([0,b],\mathbb{B)},i\in\{1,2,3\} be as in the Theorem 2.2. Furthermore, we suppose that:

  • (i)

    F1F2F3F_{1}\leq F_{2}\leq F_{3}, K1K2K3;K_{1}\leq K_{2}\leq K_{3};

  • (ii)

    the operators F2(t,,):𝔹×𝔹𝔹F_{2}(t,\cdot,\cdot):\mathbb{B\times B}\rightarrow\mathbb{B} andh,K2:𝔹𝔹\ h,K_{2}:\mathbb{B}\rightarrow\mathbb{B} are increasing;

  • (iii)

    SF1=SF2=SF3.S_{F_{1}}=S_{F_{2}}=S_{F_{3}}.

    If xiC([0,b],𝔹)x_{i}\in C([0,b],\mathbb{B)} is a solution to the equation (1.1) corresponding to FiF_{i} and Ki,i{1,2,3},K_{i},i\in\{1,2,3\}, then

    x1(0)x2(0)x3(0) imply that x1(t)x2(t)x3(t),t[0,b].x_{1}(0)\leq x_{2}(0)\leq x_{3}(0)\text{ imply that }x_{1}(t)\leq x_{2}(t)\leq x_{3}(t),\ \forall t\in[0,b].
Proof.

Applying the Theorem 2.2 we have that the operators Ai,i{1,2,3}A_{i},i\in\{1,2,3\}\ are WPOs. From the conditions (i) and (ii) to the theorem, follows that the operator A2A_{{}_{2}} is monotone increasing and A1A2A3A_{{}_{1}}\leq A_{{}_{2}}\leq A_{{}_{3}}.

Let now x~i(0)C([0,b],𝔹)\widetilde{x}_{i}(0)\in C([0,b],\mathbb{B)} be defined by x~i(0)(t)=xi(0),t[0,b]\widetilde{x}_{i}(0)(t)=x_{i}(0),\ \forall t\in[0,b]. It is clear that the following inequalities between the defined functions hold:

x~1(0)(t)x~2(0)(t)x~3(0)(t),t[0,b].\widetilde{x}_{1}(0)(t)\leq\widetilde{x}_{2}(0)(t)\leq\widetilde{x}_{3}(0)(t),\ \forall t\in[0,b].

Now we apply the Lemma 1.7 to the above inequalities and we have that

A1(x~1(0))A2(x~2(0))A3(x~3(0)).A_{{}_{1}}^{\infty}(\widetilde{x}_{1}(0))\leq A_{{}_{2}}^{\infty}(\widetilde{x}_{2}(0))\leq A_{{}_{3}}^{\infty}(\widetilde{x}_{3}(0)).

But xi=Ai(x~i(0)),i{1,2,3}x_{i}=A_{i}^{\infty}(\widetilde{x}_{i}(0)),i\in\{1,2,3\} and therefore, from the Lemma 1.7, we get that x1(t)x2(t)x3(t),t[0,b].x_{1}(t)\leq x_{2}(t)\leq x_{3}(t),\ \forall t\in[0,b].

In the last part of this section we present a data dependence result for the solutions to two similar problems with different parameters. We consider the following functional integral equations

x(t)=Fi(t,h(x)(t),x(0))+0tKi(x)(s)𝑑s,t[0,b],i{1,2}.x(t)=F_{i}(t,h(x)(t),x(0))+\int\nolimits_{0}^{t}K_{i}(x)(s)ds,\ t\in[0,b],i\in\{1,2\}.

We denote by Ai:XX,A_{i}:X\rightarrow X,

Ai(x)(t)=Fi(t,h(x)(t),x(0))+0tKi(x)(s)𝑑s,t[0,b],i{1,2}.A_{i}(x)(t)=F_{i}(t,h(x)(t),x(0))+\int\nolimits_{0}^{t}K_{i}(x)(s)ds,\ t\in[0,b],i\in\{1,2\}.

We have

Theorem 2.5.

We consider Fi,Ki,i{1,2}F_{i},K_{i},\ i\in\{1,2\} satisfying the conditions (C1)(C6)(C_{1})-(C_{6}). In addition, we suppose

  1. (i)

    there exists η1>0\eta_{1}>0 such that |F1(t,u1,u2)F2(t,u1,u2)|η1,t[0,b],u1,u2𝔹;\left|F_{1}(t,u_{1},u_{2})-F_{2}(t,u_{1},u_{2})\right|\leq\eta_{1},\forall t\in[0,b],u_{1},u_{2}\in\mathbb{B};

  2. (ii)

    there exists η2>0\eta_{2}>0 such that |K1(x)(s)K2(x)(s)|η2,s[0,b],xC([0,b],𝔹);\left|K_{1}(x)(s)-K_{2}(x)(s)\right|\leq\eta_{2},\forall s\in[0,b],x\in C([0,b],\mathbb{B)};

Then

HB(FA1,FA2)(η1+bη2)max{11L1,11L2},H_{\left\|\cdot\right\|_{B}}(F_{A_{1}},F_{A_{2}})\leq\left(\eta_{1}+b\eta_{2}\right)\max\left\{\tfrac{1}{1-L_{1}},\tfrac{1}{1-L_{2}}\right\},

where Li:=LFiLh+LKiτ,i{1,2}L_{i}:=L_{F_{i}}L_{h}+\tfrac{L_{K_{i}}}{\tau},\ i\in\{1,2\}, for τ\tau suitable selected and HBH_{\left\|\cdot\right\|_{B}} denotes the Pompeiu-Housdorff functional with respect to τ.\left\|\cdot\right\|_{\tau}.

Proof.

From the Theorem 2.2 we have that Ai|λSFiXλ:λSFiXλλSFiXλ,i{1,2}A_{i}|_{\underset{\lambda\in S_{F_{i}}}{\cup}X_{\lambda}}:\underset{\lambda\in S_{F_{i}}}{\cup}X_{\lambda}\rightarrow\underset{\lambda\in S_{F_{i}}}{\cup}X_{\lambda},i\in\{1,2\} are WPOs. Moreover, Ai|XλA_{i}|_{X_{\lambda}} is a contraction, with constant Li=LFiLh+LKiτ,i{1,2},L_{i}=L_{F_{i}}L_{h}+\tfrac{L_{K_{i}}}{\tau},\ i\in\{1,2\}, with respect to τ\left\|\cdot\right\|_{\tau} for a suitable choice of τ\tau. Therefore Ai|λSFiXλA_{i}|_{\underset{\lambda\in S_{F_{i}}}{\cup}X_{\lambda}} is ciWPO,c_{i}-WPO,\ with ci=11Lic_{i}=\frac{1}{1-L_{i}}. On the other hand we have that

|A1(x)(t)A2(x)(t)|\displaystyle\left|A_{1}(x)(t)-A_{2}(x)\!(t)\right| |F1(t,h(x)(t),x(0))F2(t,h(x)(t),x(0))|+\displaystyle\leq\left|F_{1}(t,h(x)(t),x(0))-F_{2}(t,h(x)(t),x(0))\right|+
+0t|K1(x)(s)K2(x)(s)|𝑑s\displaystyle\quad+\int\nolimits_{0}^{t}\left|K_{1}(x)(s)-K_{2}(x)(s)\right|ds
η1+bη2,xC([0,b],𝔹),t[0,b].\displaystyle\leq\eta_{1}+b\eta_{2},\ \forall x\in C([0,b],\mathbb{B)},t\in[0,b].

The conclusion follows from the Lemma 1.9. ∎

3. Special cases

In this section, we give some examples of some functional-integral equations considered in the applied problems of nonlinear analysis which are particular cases of equation (1.1).

Example 3.1.
(3.1) x(t)=x(0)+0tK(x)(s)𝑑s,t[0,b].x(t)=x(0)+\int\nolimits_{0}^{t}K(x)(s)ds,\ t\in[0,b].

In this case, the conditions (C1)(C6)(C_{1})-(C_{6}) become:

  • (C3)

    K:C([0,b],𝔹)𝔹K:C([0,b],\mathbb{B)\rightarrow B} is an abstract Volterra operator and there exists LK>0L_{K}>0 such that

    |K(x)(t)K(y)(t)|LK|x(t)y(t)|,\left|K(x)(t)-K(y)(t)\right|\leq L_{K}\left|x(t)-y(t)\right|,

    x,yC([0,b],𝔹),t[0,b];\forall x,y\in C([0,b],\mathbb{B)},\ t\in[0,b];

Let S1S_{1} be the solution set to the equation (3.1). Notice that in this condition we have that S1=𝔹S_{1}=\mathbb{B} and the integral equation has an infinite number of solutions. Also one can apply the theorems 2.2, 2.3, 2.4 and 2.5 for the study of existence and uniqueness, comparison results, order preserving property and data dependence of the solution to the equation (3.1).

Example 3.2.
(3.2) x(t)=h(x)(t)+0tK(x)(s)𝑑s,t[0,b].x(t)=h(x)(t)+\int\nolimits_{0}^{t}K(x)(s)ds,\ t\in[0,b].

In this case, the conditions (C1)(C6)(C_{1})-(C_{6}) become:

  • (C2)

    h:C([0,b],𝔹)𝔹h:C([0,b],\mathbb{B)\rightarrow B} is an abstract Volterra operator and there exists Lh>0L_{h}>0 such that

    |h(x)(t)h(y)(t)|Lh|x(t)y(t)|,\left|h(x)(t)-h(y)(t)\right|\leq L_{h}\left|x(t)-y(t)\right|,

    x,yC([0,b],𝔹),t[0,b];\forall x,y\in C([0,b],\mathbb{B)},\ t\in[0,b];

  • (C3)

    K:C([0,b],𝔹)𝔹K:C([0,b],\mathbb{B)\rightarrow B} is an abstract Volterra operator and there exists LK>0L_{K}>0 such that

    |K(x)(t)K(y)(t)|LK|x(t)y(t)|,\left|K(x)(t)-K(y)(t)\right|\leq L_{K}\left|x(t)-y(t)\right|,

    x,yC([0,b],𝔹),t[0,b];\forall x,y\in C([0,b],\mathbb{B)},\ t\in[0,b];

  • (C5)

    h(x)(0)=x(0)h(x)(0)=x(0).

Let S2S_{2} be the solution set to the equation (3.2). In this case S2=𝔹S_{2}=\mathbb{B} and, therefore, the integral equation has an infinite number of solutions. Also one can apply the theorems 2.2, 2.3, 2.4 and 2.5 for the study of existence and uniqueness, comparison results, order preserving property and data dependence of the solution to the equation (3.2).

References

  • [1] R.P. Agarwal, S. Arshad, V. Lupulescu, D. O’Regan, Evolution equations with causal operators, Differ. Equ. Appl., 7 (2015), No. 1, 15–26.
  • [2] N.V. Azbelev (ed), “Functional-differential equations” (Russian), Perm. Politekh. Inst., Perm, 1985.
  • [3] C. Corduneanu, “Integral Equations and Stability of Feedback Systems”, Academic Press, New York, 1973.
  • [4] C. Corduneanu, Abstract Volterra equations (a survey), Math. Comput. Modelling, 32 (2000), 1503–1528.
  • [5] D. Guo, V. Lakshmikantham, X. Liu, “Nonlinear Integral Equations in Abstract Spaces”, Kluwer Academic Publishers, 1996.
  • [6] V.A. Ilea, D. Otrocol, An application of the Picard operator technique to functional integral equations, J. Nonlinear Convex Anal., accepted for publication.
  • [7] V. Kolmanovskii, A. Myshkis, “Applied theory of functional differential equations””, Kluwer Academic Publisers, 1992.
  • [8] V. Lupulescu, Causal functional differential equations in Banach spaces, Nonlinear Analysis, 69 (2008), No. 12, 4787-4795.
  • [9] V. Mureşan, Some results on the solutions of a functional-integral equation, Stud. Univ. Babeş-Bolyai Math., 56 (2011), No. 4, 157-164.
  • [10] D. O’Regan, A note on the topological structure of the solution set of abstract Volterra equations, Mathematical Proceedings of the Royal Irish Academy, 99A (1999), No. 1, 67-74.
  • [11] D. Otrocol, Abstract Volterra operators, Carpathian J. Math., 24 (2008), No. 3, 370-377.
  • [12] D. Otrocol, V.A. Ilea, Qualitative properties of a functional differential equation, Electron. J. Qual. Theory Differ. Equ., 2014, No. 47, 1=8.
  • [13] S. Reich, A.J. Zaslavski, Almost all nonexpansive mappings are contractive, C.R. Math. Rep. Acad. Sci. Canada, 22 (2000), 118-124
  • [14] S. Reich, A.J. Zaslavski, The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings, C.R. Acad. Sci. Paris Ser. I Math., 333 (2001), 539-544.
  • [15] I.A. Rus, Picard operators and applications, Sci. Math. Jpn., 58 (2003), No. 1, 191-219.
  • [16] I.A. Rus, “Generalized contractions and applications”, Cluj University Press, 2001.
  • [17] M.A. Şerban, Data dependence for some functional-integral equations, Journal of Applied Mathematics, 1 (2008), No. 1, 219-234.
  • [18] M.A. Şerban, I.A. Rus, A. Petruşel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Inequal. Appl., 13 (2010), 255-269.

Running title: “Qualitative properties of functional integral equations”

Corresponding author: Veronica Ilea

E-mail: vdarzu@math.ubbcluj.ro

2018

Related Posts