[1] R.P. Agarwal, S. Arshad, V. Lupulescu, D. O’Regan, Evolution equations with causal operators, Differ. Equ. Appl. 7 (2015) No. 1 15-26.
[2] N.V. Azbelev (ed), Functional-differential equations (Russian), Perm. Politekh. Inst., Perm, 1985.
[3] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
[4] C. Corduneanu, Abstract Volterra equations (a survey), Math. Comput. Modelling 32 (2000) 1503- 1528.
[5] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, 1996.
[6] V.A. Ilea, D. Otrocol, An application of the Picard operator technique to functional integral equations, J. Nonlinear Convex Anal. 18 (2017) No. 3 405-413
[7] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publisers, 1992.
[8] V. Lupulescu, Causal functional differential equations in Banach spaces, Nonlinear Anal. 69 (2008) No. 12 4787-4795.
[9] V. Muresan, Some results on the solutions of a functional-integral equation, Stud. Univ. Babes-Bolyai Math. 56 (2011) No. 4 157-164.
[10] D. O’Regan, A note on the topological structure of the solution set of abstract Volterra equations, Mathematical Proceedings of the Royal Irish Academy 99A (1999) No. 1 67-74.
[11] D. Otrocol, Abstract Volterra operators, Carpathian J. Math. 24 (2008) No. 3 370-377.
[12] D. Otrocol, V.A. Ilea, Qualitative properties of a functional differential equation, Electron. J. Qual. Theory Differ. Equ. (2014) No. 47 1-8.
[13] S. Reich, A.J. Zaslavski, Almost all nonexpansive mappings are contractive, C.R. Math. Rep. Acad. Sci. Canada 22 (2000) 118-124
[14] S. Reich, A.J. Zaslavski, The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings, C.R. Acad. Sci. Paris Ser. I Math. 333 (2001) 539-544.
[15] I.A. Rus, Picard operators and applications, Sci. Math. Jpn. 58 (2003) No. 1 191-219.
[16] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.
[17] M.A. Serban, Data dependence for some functional-integral equations, J. Appl. Math. 1 (2008) No. 1 219-234.
[18] M.A. Serban, I.A. Rus, A. Petrusel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Inequal. Appl. 13 (2010) 255-269.