On the qualitative properties of functional integral equations with abstract Volterra operators

Abstract

Using the weakly Picard operators technique we establish existence, data dependence and comparison results of solutions for a functional integral equation with abstract Volterra operators. Some examples which show the importance of our results are also included.

Authors

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,
Technical University of Cluj-Napoca)

V. Ilea
(Babes-Bolyai Univ.)

Keywords

Functional integral equation, weakly Picard operators, data dependence and abstract Volterra operator

Cite this paper as:

D. Otrocol, V. Ilea, On the qualitative properties of functional integral equations with abstract Volterra operators, Res. Fixed Point Theory Appl., Vol. 2018 (2018), Article ID 201813, 08 pages,
https://doi.org/10.30697/rfpta-2018-13

PDF

About this paper

Journal

 Results in Fixed Point Theory and Applications

Publisher Name
DOI

https://doi.org/10.30697/rfpta-2018-13

Print ISSN

2581-6047

Online ISSN
MR
ZBL

Google Scholar

References

Paper in html format

References

[1] R.P. Agarwal, S. Arshad, V. Lupulescu, D. O’Regan, Evolution equations with causal operators, Differ. Equ. Appl. 7 (2015) No. 1 15-26.

[2] N.V. Azbelev (ed), Functional-differential equations (Russian), Perm. Politekh. Inst., Perm, 1985.

[3] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.

[4] C. Corduneanu, Abstract Volterra equations (a survey), Math. Comput. Modelling 32 (2000) 1503- 1528.

[5] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, 1996.

[6] V.A. Ilea, D. Otrocol, An application of the Picard operator technique to functional integral equations, J. Nonlinear Convex Anal. 18 (2017) No. 3 405-413

[7] V. Kolmanovskii, A. Myshkis, Applied Theory of Functional Differential Equations, Kluwer Academic Publisers, 1992.

[8] V. Lupulescu, Causal functional differential equations in Banach spaces, Nonlinear Anal. 69 (2008) No. 12 4787-4795.

[9] V. Muresan, Some results on the solutions of a functional-integral equation, Stud. Univ. Babes-Bolyai Math. 56 (2011) No. 4 157-164.

[10] D. O’Regan, A note on the topological structure of the solution set of abstract Volterra equations, Mathematical Proceedings of the Royal Irish Academy 99A (1999) No. 1 67-74.

[11] D. Otrocol, Abstract Volterra operators, Carpathian J. Math. 24 (2008) No. 3 370-377.

[12] D. Otrocol, V.A. Ilea, Qualitative properties of a functional differential equation, Electron. J. Qual. Theory Differ. Equ. (2014) No. 47 1-8.

[13] S. Reich, A.J. Zaslavski, Almost all nonexpansive mappings are contractive, C.R. Math. Rep. Acad. Sci. Canada 22 (2000) 118-124

[14] S. Reich, A.J. Zaslavski, The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings, C.R. Acad. Sci. Paris Ser. I Math. 333 (2001) 539-544.

[15] I.A. Rus, Picard operators and applications, Sci. Math. Jpn. 58 (2003) No. 1 191-219.

[16] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, 2001.

[17] M.A. Serban, Data dependence for some functional-integral equations, J. Appl. Math. 1 (2008) No. 1 219-234.

[18] M.A. Serban, I.A. Rus, A. Petrusel, A class of abstract Volterra equations, via weakly Picard operators technique, Math. Inequal. Appl. 13 (2010) 255-269.

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *

Fill out this field
Fill out this field
Please enter a valid email address.

Menu