# Piecewise convex interpolation

## Abstract

Let $$n\in N$$ and the following two systems of $$n+1$$ real values:
$0=x_{0}<x_{1}<\ldots<x_{n}=1$
$0=y_{0},\ y_{1},\ \ldots,\ y_{n}.$
In the papers ,  it is proved that if $$n\geq1$$ and $$y_{i}-y_{i-1}\neq0,\ i=1,2,\ldots,n$$ then there exists a polynomial $$P$$ which assumes at each point $$x_{i}$$ the preassigned value $$y_{i}$$ and which is piecewise monotone, more precisely:
$P\left( x_{i}\right) =y_{i},\ \ i=0,1,\ldots,n$
$P^{\prime}\left( x\right) \left( y_{i}-y_{i-1}\right) \geq0,\ \ \ x\in \left[ x_{i-1},x_{i}\right] ,\ \ i=1,2,\ldots,n.$
There are many papers related to the piecewise monotone interpolation; such references can be found in , .

The purpose of this paper is to prove the existence of a piecewise convex (by order $$p=1$$) interpolating polynomial. Our proof uses the Wolibner-Young’s theorem ,  concerning the piecewise monotone (convex by order $$p=0$$) interpolation, in the same way that the last one uses the Weierstrass approximation theorem.

## Authors

Liceul de Informatică, Cluj-Napoca

??

## PDF

##### Cite this paper as:

R. Precup, Piecewise convex interpolation, Rev. Anal. Numér. Théor. Approx., 14 (1985) no. 2, pp. 123-126.

##### Journal

Mathematica – Revue d’analyse numérique et de théorie d’approximation

##### Print ISSN

Not available yet.

##### Online ISSN

Not available yet.

MR: 87m:41004.

## References

 Wolibner, W., Sur un polynôme d’interpolation. (French) Colloquium Math. 2, (1951). 136-137, MR0043946 .

 Young, S., Piecewise monotone interpolation, Bull. Amer. Math. Soc., 73, 642-643.

 Nikolčeva, M.G., Interpolation of monotone and convex functions, Proceedings of the International Conference on constructive function Theory, Blagcevgrad, May 30 – June 6, 1977, Sofia 1980, 437-442.

 Iliev, G. L., Exact estimates for monotone interpolation. J. Approx. Theory 28 (1980), no. 2, 101-112, MR0573325.

 Precup, Radu, Estimates of the degree of comonotone interpolating polynomials. Anal. Numér. Théor. Approx. 11 (1982), no. 1-2, 139-145, MR0692479.