Positive solutions for discontinuous systems via a multivalued vector version of Krasnosel’skii’s fixed point theorem in cones


We establish the existence of positive solutions for systems of second–order differential equations with discontinuous nonlinear terms. To this aim, we give a multivalued vector version of Krasnosel’skiĭ’s fixed point theorem in cones which we apply to a regularization of the discontinuous integral operator associated to the differential system. We include several examples to illustrate our theory.


Radu Precup
Babes-Bolyai University, Cluj-Napoca, Romania

Jorge Rodríguez-López
Universidade de Santiago de Compostela, Santiago, Spain


Krasnosel’skiĭ’s fixed point theorem; positive solutions; discontinuous differential equations; differential system

Paper coordinates

R. López Pouso, R. Precup, J. Rodríguez-López, Positive solutions for discontinuous systems via a multivalued vector version of Krasnosel’skii’s fixed point theorem in cones, Mathematics 7 (5) (2019), art. id. 451, pp 15, https://doi.org/10.3390/math7050451



About this paper



Publisher Name


Print ISSN
Online ISSN


google scholar link

[1] Figueroa, R.; Infante, G. A Schauder–type theorem for discontinuous operators with applications to second-order BVPs. Fixed Point Theory Appl. 20162016, 53. [Google Scholar] [CrossRef]
[2] Figueroa, R.; Pouso, R.L.; Rodríguez-López, J. A version of Krasnosel’skiĭ’s compression-expansion fixed point theorem in cones for discontinuous operators with applications. Topol. Methods Nonlinear Anal. 201851, 493–510. [Google Scholar] [CrossRef]
[3] López Pouso, R. Schauder’s fixed–point theorem: New applications and a new version for discontinuous operators. Bound. Value Probl. 20122012, 92. [Google Scholar] [CrossRef]
[4] Filippov, A.F. Differential Equations with Discontinuous Righthand Sides; Kluwer Academic: Dordrecht, The Netherlands, 1988. [Google Scholar]
[5] Hu, S. Differential equations with discontinuous right-hand sides. J. Math. Anal. Appl. 1991154, 377–390. [Google Scholar] [CrossRef][Green Version]
[6] Spraker, J.S.; Biles, D. A comparison of the Carathéodory and Filippov solution sets. J. Math. Anal. Appl. 1996198, 571–580. [Google Scholar] [CrossRef]
[7] Bereanu, C.; Jebelean, P.; Şerban, C. The Dirichlet problem for discontinuous perturbations of the mean curvature operator in Minkowski space. Electron. J. Qual. Theory Differ. Equ. 201535, 1–7. [Google Scholar] [CrossRef]
[8] Bonanno, G.; Jebelean, P.; Şerban, C. Three periodic solutions for discontinuous perturbations of the vector p-Laplacian operator. Proc. R. Soc. Edinb. A 2017147, 673–681. [Google Scholar] [CrossRef]
[9] Cid, J.A.; Pouso, R.L. Ordinary differential equations and systems with time-dependent discontinuity sets. Proc. R. Soc. Edinb. A 2004134, 617–637. [Google Scholar] [CrossRef]
[10] Bonanno, G.; Bisci, G.M. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 20092009, 670675. [Google Scholar] [CrossRef]
[11] Bonanno, G.; Buccellato, S.M. Two point boundary value problems for the Sturm–Liouville equation with highly discontinuous nonlinearities. Taiwan J. Math. 201014, 2059–2072. [Google Scholar] [CrossRef]
[12] Bonanno, G.; Iannizzotto, A.; Marras, M. On ordinary differential inclusions with mixed boundary conditions. Differ. Integral Equ. 201730, 273–288. [Google Scholar]
[13] Heikkilä, S.; Lakshmikantham, V. Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations; Marcel Dekker: New York, NY, USA, 1994. [Google Scholar]
[14] Fitzpatrick, P.M.; Petryshyn, W.V. Fixed point theorems and the fixed point index for multivalued mappings in cones. J. Lond. Math. Soc. 19752, 75–85. [Google Scholar] [CrossRef]
[15] Precup, R. A vector version of Krasnosel’skiĭ’s fixed point theorem in cones and positive periodic solutions of nonlinear systems. J. Fixed Point Theory Appl. 20072, 141–151. [Google Scholar] [CrossRef]
[16] Precup, R. Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications. In Mathematical Models in Engineering, Biology and Medicine; AIP Conference Proceedings; American Institute of Physics: Melville, NY, USA, 2009; Volume 1124, pp. 284–293. [Google Scholar]
[17] Aliprantis, C.D.; Border, K.C. Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
[18] Infante, G.; Maciejewski, M.; Precup, R. A topological approach to the existence and multiplicity of positive solutions of (p,q)-Laplacian systems. Dyn. Partial Differ. Equ. 201512, 193–215. [Google Scholar] [CrossRef]


Related Posts