Abstract
In this paper a new version of Krasnoselskii’s fixed point theorem in cones, together with a global weak Harnack inequality for nonnegative superharmonic functions are used to investigate the existence of positive solutions of the Dirichlet problem for semi-linear elliptic equations.
Authors
Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
positive solution; fixed point theorem in cones; elliptic boundary value problem; weak Harnack inequality.
Paper coordinates
R. Precup, Positive solutions of semi-linear elliptic problems via Krasnoselskii type theorems in cones and Harnack’s inequality, in “Mathematical Analysis ans Applications”, eds. V. Radulescu and C. Niculescu, Amer. Inst. Physics, AIP Conference Proceedings, vol. 835, 2006, 125-132. https://doi.org/10.1063/1.2205042
About this paper
Journal
Mathematical Analysis and Applications
Publisher Name
American Inst. of Physics
Print ISSN
ISBN:0735403287
ISBN:978-0735403284
Online ISSN
MR2258649.
google scholar link
1. Agarwal, R.P., Meehan, M., O’Regan, D. and Precup, R., Location of nonnegative solutions for differential equations on finite and semi-infinite intervals, Dynamic Systems Appl. 12 (2003), 323-332.
2. Agarwal, R.P., O’Regan, D. and Wong, P.J.Y., Positive Solutions of Differential, Difference and Integral Equations, Kluwer, Dordrecht, 1999.
3. Amann, H., Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976), 620-709.
4. Bandle, C., Coffman, C.V. and Marcus, M., Nonlinear elliptic problems in annular domains, J. Differential Equations 69 (1987), 322-345.
5. Erbe, L.H., Hu, S. and Wang, H., Multiple positive solutions of some boundary value problems, J. Math. Anal. Appl. 184 (1994), 640-648.
6. Erbe, L.H. and Wang, H., On the existence of positive solutions of ordinary differential equations, Proc. Amer. Math. Soc. 120 (1994), 743-748.
7. Gilbarg, D. and Trudinger, N.S., Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 1983.
8. Granas, A. and Dugundji, J., Fixed Point Theory, Springer, New York, 2003.
9. Guo, D., Lakshmikantham, V. and Liu, X., Nonlinear Integral Equations in Abstract Spaces, Kluwer, Dordrecht, 1996.
10. Henderson, J. and Wang, H., Positive solutions for nonlinear eigenvalue problems, J. Math. Anal. Appl. 208 (1997), 252-259.
11. Horvat–Marc, A. and Precup, R., Nonnegative solutions of nonlinear integral equations in ordered Banach spaces, Fixed Point Theory 5 (2004), 65-70.
12. Krasnoselskii, M.A., Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
13. Lan, K. and Webb, J.R.L., Positive solutions of semilinear differential equations with singularities, J. Differential Equations 148 (1998), 407-421.
14. Lian, W.-C., Wong, F.-H. and Yeh, C.-C., On the existence of positive solutions of nonlinear second order differential equations, Proc. Amer. Math. Soc. 124 (1996), 1117-1126.
15. Lions, P.L., On the existence of positive solutions of semilinear elliptic equations, SIAM Review 24 (1982), 441-467.
16. Meehan, M. and O’Regan, D., Positive Lp solutions of Hammerstein integral equations, Arch. Math. 76 (2001), 366-376.
17. O’Regan, D. and Precup, R., Theorems of Leray–Schauder Type and Applications, Taylor and Francis, London, 2002.
18. O’Regan, D. and Precup, R., Compression-expansion fixed point theorem in two norms and applications, J. Math. Anal. Appl. 309 (2005), 383-391.
19. O’Regan, D. and Wang, H., Positive periodic solutions of systems of second order ordinary differential equations, Positivity, to appear.
20. Potter, A.J.B., A fixed point theorem for positive k-set contractions, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), 93-102.
21. Precup, R., Existence and localization results for the nonlinear wave equation, Fixed Point Theory 5 (2004), 309-321.
22. Precup, R., Compression-expansion fixed point theorems in two norms, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity 3 (2005), 157-163.
23. Precup, R., Positive solutions of evolution operator equations, Austral. J. Math. Anal. Appl. 2 (2005), no.1, 1-10 (electronic).
24. Wang, H., On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations 109 (1994), 1-7.