Remarks on solving the systems of equations by iterative methods


In this paper we give a condition for the convergence of an iterative method of Gauss-Seidel type  \[ x_i = \varphi (x_{i-1}, y_{i-1}) \\ y_i = \psi (x_i, y_{i-1})\] for solving the nonlinear system of equations of the type: \[ x = \varphi (x, y) \\ y = \psi (x, y). \] We then provide some error evaluations in case of exact and approximate computations. We also provide a sufficient condition when the system contains \(k\) equations with \(k\) unknowns \[x_i = \varphi_i (x_1,x_2,…,x_k), \quad i=1,…,k.\]


Ion Păvăloiu
Tiberiu Popoviciu Institute of Numerical Analysis


Original Title (in Romanian)

Observații asupra rezolvării sistemelor de ecuații cu ajutorul procedeelor iterative

English Translation of the Title

Remarks on solving the systems of equations by iterative methods


nonlinear system of equations; fixed point problem; Gauss-Seidel method.


Cite this paper as:

I. Păvăloiu, Observaţii asupra rezolvării sistemelor de ecuaţii cu ajutorul procedeelor iterative, Studii şi cercetări matematice, 19 (1967) no. 9, pp. 1289-1298.

About this paper


Studii şi cercetări matematice

Publisher Name

Academia Republicii S.R.


Not available yet.


Not available yet.


Not available yet.


Not available yet.


  1. B.P. Demidovici, I.A. Maron, Osnovi vacislietel’noi matematiki, Gas. izd. fiz. mat. lit., Moskva, 1960, pp. 148–151.
  2. J.F. Traub, Iterative Methods for the Solution of Equations. Prentice Hall, Inc., Englewwod Cliffs, N.J., 1964, 99.38-39.
  3. A.M. Ostrowski, Resenie uravnenii i sistem uravnenii, Izd. inostr. lit., Moskva, 1963, pp. 83–94.
  4. I. Pavaloiu, On some recurrent inequalities and some of their applications, Communication at the Scientific Session of the Institute for Mining Petrosani, February 7–10, 1966.

Google scholar – not available yet


Related Posts

No results found.