Stratified equatorial flows in cylindrical coordinates with surface tension

Abstract

This paper considers a mathematical model of steady flows of an inviscid and incompressible fluid moving in the azimuthal direction. The water density varies with depth and the waves are propagating under the force of gravity, over a flat bed and with a free surface, on which acts a force of surface tension. Our solution pertains to large scale equatorial dynamics of a fluid with free surface expressed in cylindrical coordinates. We also prove a regularity result for the free surface.

Authors

Cristina Gheorghe
Faculty of Mathematics and Computer Science, Babeş-Bolyai, Cluj-Napoca, Romania

Andrei Stan
Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, RomaniaΒ 

Keywords

Azimuthal flows; Surface tension; Depth-dependent density; Implicit function theorem; Coriolis force; Cylindrical coordinates

Paper coordinates

C. Gheorghe, A. Stan, Stratified equatorial flows in cylindrical coordinates with surface tension,Β Monatsh. Math.,Β 205 (2024), 497–509. https://doi.org/10.1007/s00605-024-02007-4

PDF

About this paper

Journal

Monath. Math.

Publisher Name

Springer

Print ISSN
Online ISSN

google scholar link

[1] Basu, B., On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete Cont. Dyn. Syst. Ser. A. 39(8), 4783–4796 (2019)
[2] Berger, M.S., Nonlinearity and Functional Analysis. Academic Press, New York (1977)
[3] Constantin, A., An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, 05029 (2012)
[4] Constantin, A., On the modelling of equatorial waves. Geophys. Res. Lett. 39(5), 05602 (2012)
[5] Constantin, A., Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44(2), 781–789 (2014)
[6] Constantin, A., Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43(1), 165–175 (2013)
[7] Constantin, A., Escher, J., Analyticity of periodic traveling free surface water waves with vorticity. Ann. Math. 173(1), 559–568 (2011)
[8] Constantin, A., Johnson, R.S., A nonlinear, three-dimensional model for ocean flows, motivated by some observations in the Pacific equatorial undercurrent and thermocline. Phys. Fluids 29(5), 056604 (2017)
[9] Constantin, A., Johnson, R.S., An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46(6), 1935–1945 (2016)
[10] Constantin, A., Johnson, R.S, An exact, steady, purely azimuthal flow as a model for the Antarctic circumpolar current. J. Phys. Oceanogr. 46(12), 3585–3594 (2016)
[11] Constantin, A., Johnson, R.S., The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109(4), 311–358 (2015)
[12] Coddington, E.A., An Introduction to Ordinary Differential Equations. Dover, New York (1961)
[13] Escher, J., Matioc, A.-V., On the analyticity of periodic gravity water waves with integrable vorticity function. Diff. Integral Equ. 27(3–4), 217–232 (2014)
[14] Fedorov, A.V., Brown, J.N, Equatorial Waves. In: Steele, J. (ed.) Encyclopedia of Ocean Sciences, pp.3679–3695. Academic Press (2009)
[15] Garrison, T.S., Essentials of Oceanography. Cengage Learning, Brooks/Cole Belmont (2009)
[16] Henry, D., Analyticity of the streamlines for periodic travelling free surface capillary-gravity water waves with vorticity. SIAM J. Math. Anal. 42(6), 3103–3111 (2010)
[17] Henry, D., Martin, C.I., Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Ration. Mech. Anal. 233, 497–512 (2019)
[18] Henry, D., Martin, C.I., Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Diff. Equ. 266(10), 6788–6808 (2019)
[19] Henry, D., Martin, C.I., Stratified equatorial flows in cylindrical coordinates. Nonlinearity 33(8), 3889 (2020)
[20] Hsu, H.-C., An exact solution for equatorial waves. Monatsh. Math. 176, 143–152 (2015)
[21] Hsu, H.-C., Martin, C.I., Free-surface capillary-gravity azimuthal equatorial flows. Nonlinear Anal. 144, 1–9 (2016)
[22] Ionescu-Kruse, D., An exact solution for geophysical edge waves in the f-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)
[23] Izumo, T., The equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El NiΓ±o events in the tropical Pacific Ocean. Ocean Dyn. 55(2), 110–123 (2005)
[24] ohnson, G.C., McPhaden, M.J., Firing, E., Equatorial pacific ocean horizontal velocity, divergence and upwelling. J. Phys. Oceanogr. 31(3), 839–849 (2001)
[25] Kessler, W.S., McPhaden, M.J., Oceanic Equatorial waves and the 1991–93 El NiΓ±o. J. Climate 8(7), 1757–1774 (1995)
[26] Kothe, G., Topological Vector Spaces I, 2nd edn. Springer, Berlin (1983)
[27] Magnus, W., On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)
[28] Martin, C.I., Local bifurcation and regularity for steady periodic capillary-gravity water waves with constant vorticity. Nonlinear Anal. Real World Appl. 14(1), 131–149 (2013)
[29] Martin, J.F.P., On the exponential representation of solutions of linear differential equations. J. Diff. Equ. 4, 257–279 (1968)
[30] Matioc, A.-V., An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A: Math. Theor. 45(36), 365501 (2012)
[31] Matioc, A.-V., Steady internal water waves with a critical layer bounded by the wave surface. J. Nonlinear Math. Phys. 19, 1250008 (2012)
[32] McCreary, J.P., Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech. 17, 359–409 (1985)
[33] Precup, R.: Ordinary Differential Equations: Example-Driven, Including Maple Code. De Gruyter, Berlin, Boston (2018)
[34] Royden, H.L., Fitzpatrick, P., Real Analysis. Prentice Hall, Boston (2010)
[35] Vallis, G., Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, Cambridge (2017)

Paper (preprint) in HTML form

Stratified equatorial flows in cylindrical coordinates with surface tension

G. Cristina G. Cristina, Faculty of Mathematics and Computer Science, BabeΘ™-Bolyai University, 400084 Cluj-Napoca, Romania cristina.gheorghe@ubbcluj.ro  and  Andrei Stan A. Stan, Faculty of Mathematics and Computer Science, BabeΘ™-Bolyai University, 400084 Cluj-Napoca, Romania & Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O. Box 68-1, 400110 Cluj-Napoca, Romania andrei.stan@ubbcluj.ro
Abstract.

This paper considers a mathematical model of steady flows of an inviscid and incompressible fluid moving in the azimuthal direction. The water density varies both in depth and latitude and the waves are propagating under the force of gravity, over a flat bed and with a free surface, on which acts a force of surface tension. Our solution pertains to large scale equatorial dynamics of a fluid with free surface expressed in cylindrical coordinates. We also prove a regularity result for the free surface.


Key words and phrases: Azimuthal flows, Surface tension, General density, Implicit function theorem, Coriolis force, Cylindrical coordinates

Mathematics Subject Classification (2010): 35Q31, 35Q35, 35Q86, 35R35, 26B10

1. Introduction

Our aim is to study equatorial flows exhibiting general (continuous) stratification depending on depth and latitude. This work is motivated by the intriguing features observed in the Equatorial region, situated approximately 2Β° latitude from the Equator. In this area, strong vertical ocean stratification prevails, surpassing other ocean zones and creating a distinct thermoclineβ€”a sharp interface separating warmer, less dense surface water from colder, denser water below (see [20, 21, 22, 23, 16, 18]). Additionally, the equatorial region showcases underlying currents, including a westward drift near the surface triggered by prevailing trade winds and the presence of the Equatorial Undercurrent (EUC), an eastward pointing stream residing on the thermocline. These characteristics contribute to the complexity of large-scale ocean motions, emphasizing the importance of understanding fluid density variations in both depth and latitude, primarily influenced by temperature and, to a lesser extent, salinity (see, e.g., [16, 17, 18]).

Our goal in this study is to establish the existence of an exact solution within a cylindrical frame to the highly nonlinear and intractable equations of geophysical fluid dynamics (GFD). In this context, we would like to mention that, recently, a number of exact solutions of the GFD governing equations were devised, cf. [14, 15, 24, 25, 20, 26, 27, 28, 29, 30, 31, 32]. The solution characterizes a flow propagating in the azimuthal direction, influenced by both gravity and surface tension, while maintaining variability in density across all directions. This form of density distribution proves sufficiently general to capture and model most geophysical fluid dynamics phenomena [19].

The Equatorial motion has been the subject of previous studies, where has been proven the existence of exact solutions under various contexts (see, e.g., [2, 3, 13, 14, 15]). The novelty of this paper lies in deducing an existence result, considering both surface tension and density variation. While comparable results, utilizing cylindrical coordinates, have been achieved in [2] and [3], it is noteworthy that these outcomes are exclusively applicable to one of the two cases mentioned earlier.

2. Preliminaries

Considering the line of Equator ”straightened” and replaced to the z axis, and the body of the sphere, represented by a circular disc described by radius r and the angle of deflection from the equator, θ∈(βˆ’Ο€2,Ο€2)πœƒπœ‹2πœ‹2\theta\in\displaystyle\left(-\frac{\pi}{2},\frac{\pi}{2}\right)italic_ΞΈ ∈ ( - divide start_ARG italic_Ο€ end_ARG start_ARG 2 end_ARG , divide start_ARG italic_Ο€ end_ARG start_ARG 2 end_ARG ), the fluid motion can be described in cylindrical coordinates. We can provide a right-handed rotating system of coordinates (r, ΞΈπœƒ\thetaitalic_ΞΈ, z), where r measures the distance from the center of the disc (physically, it means the distance to the center of the Earth), ΞΈπœƒ\thetaitalic_ΞΈ is increasing from north to south and the z axis points positively from west to east. Note that ΞΈ=0πœƒ0\theta=0italic_ΞΈ = 0 corresponds to the line of Equator. The associated unit vectors in the (r, ΞΈπœƒ\thetaitalic_ΞΈ, z) system are (erβ†’,eΞΈβ†’,ezβ†’β†’subscriptπ‘’π‘Ÿβ†’subscriptπ‘’πœƒβ†’subscript𝑒𝑧\vec{e_{r}},\vec{e_{\theta}},\vec{e_{z}}overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG , overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_ARG , overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT end_ARG) and the velocity corresponding components are (u,v,w).
The equations describing the motion of an inviscid and incompressible flow are comprised in the Euler equations and, respectively, mass conservation equation. In cylindrical coordinates, they are given by

(2.1) {ut+u⁒ur+vr⁒uΞΈ+w⁒uzβˆ’v2r=βˆ’1ρ⁒pr+Frvt+u⁒vr+vr⁒vΞΈ+w⁒v⁒z+u⁒vr=βˆ’1ρ⁒1r⁒pΞΈ+FΞΈwt+u⁒wr+vr+wΞΈ+w⁒wz=βˆ’1ρ⁒pz+Fz,casessubscript𝑒𝑑𝑒subscriptπ‘’π‘Ÿπ‘£π‘Ÿsubscriptπ‘’πœƒπ‘€subscript𝑒𝑧superscript𝑣2π‘Ÿ1𝜌subscriptπ‘π‘ŸsubscriptπΉπ‘Ÿotherwiseotherwiseotherwisesubscript𝑣𝑑𝑒subscriptπ‘£π‘Ÿπ‘£π‘Ÿsubscriptπ‘£πœƒπ‘€π‘£π‘§π‘’π‘£π‘Ÿ1𝜌1π‘Ÿsubscriptπ‘πœƒsubscriptπΉπœƒotherwiseotherwiseotherwisesubscript𝑀𝑑𝑒subscriptπ‘€π‘Ÿπ‘£π‘Ÿsubscriptπ‘€πœƒπ‘€subscript𝑀𝑧1𝜌subscript𝑝𝑧subscript𝐹𝑧otherwise\begin{cases}\displaystyle u_{t}+uu_{r}+\frac{v}{r}u_{\theta}+wu_{z}-\frac{v^{% 2}}{r}=-\frac{1}{\rho}p_{r}+F_{r}\\ ~{}\\ \displaystyle v_{t}+uv_{r}+\frac{v}{r}v_{\theta}+wvz+\frac{uv}{r}=-\frac{1}{% \rho}\frac{1}{r}p_{\theta}+F_{\theta}\\ ~{}\\ \displaystyle w_{t}+uw_{r}+\frac{v}{r}+w_{\theta}+ww_{z}=-\frac{1}{\rho}p_{z}+% F_{z},\end{cases}{ start_ROW start_CELL italic_u start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_u italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG italic_v end_ARG start_ARG italic_r end_ARG italic_u start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_w italic_u start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT - divide start_ARG italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG italic_p start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_F start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_u italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG italic_v end_ARG start_ARG italic_r end_ARG italic_v start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_w italic_v italic_z + divide start_ARG italic_u italic_v end_ARG start_ARG italic_r end_ARG = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_F start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_u italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG italic_v end_ARG start_ARG italic_r end_ARG + italic_w start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_w italic_w start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG italic_p start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT + italic_F start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW

and

(2.2) 1rβ’βˆ‚βˆ‚r⁒(r⁒ρ⁒u)+1rβ’βˆ‚βˆ‚ΞΈβ’(ρ⁒v)+βˆ‚βˆ‚z⁒(ρ⁒w)=0,1π‘Ÿπ‘Ÿπ‘ŸπœŒπ‘’1π‘ŸπœƒπœŒπ‘£π‘§πœŒπ‘€0\frac{1}{r}\frac{\partial}{\partial r}(r\rho u)+\frac{1}{r}\frac{\partial}{% \partial\theta}(\rho v)+\frac{\partial}{\partial z}(\rho w)=0,divide start_ARG 1 end_ARG start_ARG italic_r end_ARG divide start_ARG βˆ‚ end_ARG start_ARG βˆ‚ italic_r end_ARG ( italic_r italic_ρ italic_u ) + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG divide start_ARG βˆ‚ end_ARG start_ARG βˆ‚ italic_ΞΈ end_ARG ( italic_ρ italic_v ) + divide start_ARG βˆ‚ end_ARG start_ARG βˆ‚ italic_z end_ARG ( italic_ρ italic_w ) = 0 ,

respectively. We denote ρ𝜌\rhoitalic_ρ as the fluid density, p𝑝pitalic_p as the pressure in the fluid, and (Fr,FΞΈ,FzsubscriptπΉπ‘ŸsubscriptπΉπœƒsubscript𝐹𝑧F_{r},F_{\theta},F_{z}italic_F start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT , italic_F start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT , italic_F start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT) as the body-force vector, with these quantities depending on the variables rπ‘Ÿritalic_r, ΞΈπœƒ\thetaitalic_ΞΈ, and z𝑧zitalic_z.

To ensure a precise examination of fluid dynamics in specific locations, it is essential to account for the Earth’s rotation effects. The additional terms to incorporate into the expression of the equations of Euler are related to the Coriolis force 2⁒Ω→×uβ†’2→Ω→𝑒2\vec{\Omega}\times\vec{u}2 overβ†’ start_ARG roman_Ξ© end_ARG Γ— overβ†’ start_ARG italic_u end_ARG and the centripetal acceleration Ξ©β†’Γ—(Ξ©β†’Γ—rβ†’)β†’Ξ©β†’Ξ©β†’π‘Ÿ\vec{\Omega}\times(\vec{\Omega}\times\vec{r})overβ†’ start_ARG roman_Ξ© end_ARG Γ— ( overβ†’ start_ARG roman_Ξ© end_ARG Γ— overβ†’ start_ARG italic_r end_ARG ), where

Ξ©β†’=βˆ’Ξ©β’((sin⁑θ)⁒erβ†’+(cos⁑θ)⁒eΞΈβ†’),β†’Ξ©Ξ©πœƒβ†’subscriptπ‘’π‘Ÿπœƒβ†’subscriptπ‘’πœƒ\displaystyle\vec{\Omega}=-\Omega((\sin\theta)\vec{e_{r}}+(\cos\theta)\vec{e_{% \theta}}),overβ†’ start_ARG roman_Ξ© end_ARG = - roman_Ξ© ( ( roman_sin italic_ΞΈ ) overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG + ( roman_cos italic_ΞΈ ) overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_ARG ) ,
uβ†’=u⁒erβ†’+v⁒eΞΈβ†’+w⁒ezβ†’,→𝑒𝑒→subscriptπ‘’π‘Ÿπ‘£β†’subscriptπ‘’πœƒπ‘€β†’subscript𝑒𝑧\displaystyle\vec{u}=u\vec{e_{r}}+v\vec{e_{\theta}}+w\vec{e_{z}},overβ†’ start_ARG italic_u end_ARG = italic_u overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG + italic_v overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_ARG + italic_w overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT end_ARG ,
rβ†’=r⁒erβ†’.β†’π‘Ÿπ‘Ÿβ†’subscriptπ‘’π‘Ÿ\displaystyle\vec{r}=r\vec{e_{r}}.overβ†’ start_ARG italic_r end_ARG = italic_r overβ†’ start_ARG italic_e start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_ARG .

Here, Ξ©β‰ˆ7.29Γ—10βˆ’5⁒r⁒a⁒d/sΞ©7.29superscript105π‘Ÿπ‘Žπ‘‘π‘ \Omega\approx 7.29\times 10^{-5}rad/sroman_Ξ© β‰ˆ 7.29 Γ— 10 start_POSTSUPERSCRIPT - 5 end_POSTSUPERSCRIPT italic_r italic_a italic_d / italic_s stands for the constant rate of rotation of the Earth.

The two forces mentioned earlier sum up in the Euler equations. Thus, since the gravity is given by the vector (βˆ’g,0,0)𝑔00(-g,0,0)( - italic_g , 0 , 0 ), 2⁒Ω→×uβ†’=2⁒Ω⁒(βˆ’w⁒cos⁑θ,w⁒sin⁑θ,u⁒cosβ‘ΞΈβˆ’v⁒sin⁑θ)2→Ω→𝑒2Ξ©π‘€πœƒπ‘€πœƒπ‘’πœƒπ‘£πœƒ2\vec{\Omega}\times\vec{u}=2\Omega(-w\cos\theta,w\sin\theta,u\cos\theta-v\sin\theta)2 overβ†’ start_ARG roman_Ξ© end_ARG Γ— overβ†’ start_ARG italic_u end_ARG = 2 roman_Ξ© ( - italic_w roman_cos italic_ΞΈ , italic_w roman_sin italic_ΞΈ , italic_u roman_cos italic_ΞΈ - italic_v roman_sin italic_ΞΈ ) and Ξ©β†’Γ—(Ξ©β†’Γ—rβ†’)=r⁒Ω2⁒cos⁑θ⁒(βˆ’cos⁑θ,sin⁑θ,0),β†’Ξ©β†’Ξ©β†’π‘Ÿπ‘ŸsuperscriptΞ©2πœƒπœƒπœƒ0\vec{\Omega}\times(\vec{\Omega}\times\vec{r})=r\Omega^{2}\cos\theta(-\cos% \theta,\sin\theta,0),overβ†’ start_ARG roman_Ξ© end_ARG Γ— ( overβ†’ start_ARG roman_Ξ© end_ARG Γ— overβ†’ start_ARG italic_r end_ARG ) = italic_r roman_Ξ© start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos italic_ΞΈ ( - roman_cos italic_ΞΈ , roman_sin italic_ΞΈ , 0 ) , one has

(2.3) {ut+u⁒ur+vr⁒uΞΈ+w⁒uzβˆ’v2rβˆ’2⁒Ω⁒w⁒cosβ‘ΞΈβˆ’r⁒Ω2⁒cos2⁑θ=βˆ’1ρ⁒prβˆ’gvt+u⁒vr+vr⁒vΞΈ+w⁒v⁒z+u⁒vr+2⁒Ω⁒w⁒sin⁑θ+r⁒Ω2⁒sin⁑θ⁒cos⁑θ=βˆ’1ρ⁒1r⁒pΞΈwt+u⁒wr+vr+wΞΈ+w⁒wz+2⁒Ω⁒(u⁒cosβ‘ΞΈβˆ’v⁒sin⁑θ)=βˆ’1ρ⁒pz.casessubscript𝑒𝑑𝑒subscriptπ‘’π‘Ÿπ‘£π‘Ÿsubscriptπ‘’πœƒπ‘€subscript𝑒𝑧superscript𝑣2π‘Ÿ2Ξ©π‘€πœƒπ‘ŸsuperscriptΞ©2superscript2πœƒ1𝜌subscriptπ‘π‘Ÿπ‘”otherwiseotherwiseotherwisesubscript𝑣𝑑𝑒subscriptπ‘£π‘Ÿπ‘£π‘Ÿsubscriptπ‘£πœƒπ‘€π‘£π‘§π‘’π‘£π‘Ÿ2Ξ©π‘€πœƒπ‘ŸsuperscriptΞ©2πœƒπœƒ1𝜌1π‘Ÿsubscriptπ‘πœƒotherwiseotherwiseotherwisesubscript𝑀𝑑𝑒subscriptπ‘€π‘Ÿπ‘£π‘Ÿsubscriptπ‘€πœƒπ‘€subscript𝑀𝑧2Ξ©π‘’πœƒπ‘£πœƒ1𝜌subscript𝑝𝑧otherwise\begin{cases}\displaystyle u_{t}+uu_{r}+\frac{v}{r}u_{\theta}+wu_{z}-\frac{v^{% 2}}{r}-2\Omega w\cos\theta-r\Omega^{2}\cos^{2}\theta=-\frac{1}{\rho}p_{r}-g\\ ~{}\\ \displaystyle v_{t}+uv_{r}+\frac{v}{r}v_{\theta}+wvz+\frac{uv}{r}+2\Omega w% \sin\theta+r\Omega^{2}\sin\theta\cos\theta=-\frac{1}{\rho}\frac{1}{r}p_{\theta% }\\ ~{}\\ \displaystyle w_{t}+uw_{r}+\frac{v}{r}+w_{\theta}+ww_{z}+2\Omega(u\cos\theta-v% \sin\theta)=-\frac{1}{\rho}p_{z}.\end{cases}{ start_ROW start_CELL italic_u start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_u italic_u start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG italic_v end_ARG start_ARG italic_r end_ARG italic_u start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_w italic_u start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT - divide start_ARG italic_v start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_r end_ARG - 2 roman_Ξ© italic_w roman_cos italic_ΞΈ - italic_r roman_Ξ© start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ΞΈ = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG italic_p start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_g end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_u italic_v start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG italic_v end_ARG start_ARG italic_r end_ARG italic_v start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_w italic_v italic_z + divide start_ARG italic_u italic_v end_ARG start_ARG italic_r end_ARG + 2 roman_Ξ© italic_w roman_sin italic_ΞΈ + italic_r roman_Ξ© start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_sin italic_ΞΈ roman_cos italic_ΞΈ = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_w start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_u italic_w start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG italic_v end_ARG start_ARG italic_r end_ARG + italic_w start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_w italic_w start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT + 2 roman_Ξ© ( italic_u roman_cos italic_ΞΈ - italic_v roman_sin italic_ΞΈ ) = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG italic_p start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT . end_CELL start_CELL end_CELL end_ROW

Besides the mass conservation and Euler equations, the water motion is also subject to boundary conditions. Considering that the fluid extends to infinity in all horizontal directions, there are two boundaries: the rigid flat bed and the free surface of the water. On the bed r=d⁒(ΞΈ,z)π‘Ÿπ‘‘πœƒπ‘§r=d(\theta,z)italic_r = italic_d ( italic_ΞΈ , italic_z ), we have the kinematic boundary condition

(2.4) u=w⁒dz+1r⁒v⁒dΞΈ.𝑒𝑀subscript𝑑𝑧1π‘Ÿπ‘£subscriptπ‘‘πœƒu=wd_{z}+\displaystyle\frac{1}{r}vd_{\theta}.italic_u = italic_w italic_d start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_v italic_d start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT .

On the free surface r=R+h⁒(ΞΈ,z)π‘Ÿπ‘…β„Žπœƒπ‘§r=R+h(\theta,z)italic_r = italic_R + italic_h ( italic_ΞΈ , italic_z ), along with the kinematic boundary condition

(2.5) u=w⁒hz+1r⁒v⁒hΞΈ,𝑒𝑀subscriptβ„Žπ‘§1π‘Ÿπ‘£subscriptβ„Žπœƒu=wh_{z}+\displaystyle\frac{1}{r}vh_{\theta},italic_u = italic_w italic_h start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_v italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ,

we also have the dynamic condition

(2.6) p=P⁒(ΞΈ,z)+Οƒβ’βˆ‡β‹…nβ†’,π‘π‘ƒπœƒπ‘§β‹…πœŽβˆ‡β†’π‘›p=P(\theta,z)+\sigma\nabla\cdot\vec{n},italic_p = italic_P ( italic_ΞΈ , italic_z ) + italic_Οƒ βˆ‡ β‹… overβ†’ start_ARG italic_n end_ARG ,

where ΟƒπœŽ\sigmaitalic_Οƒ is the coefficient of surface tension and n→→𝑛\vec{n}overβ†’ start_ARG italic_n end_ARG is the unit normal vector, pointing outward. The function hβ„Žhitalic_h is unknown and will be determined later.

3. Main result

Our aim is to determine the pressure under the additional assumption that the flow is purely azimuthal and invariant in this direction, i.e.,

(3.1) u=v=0⁒ and β’w=w⁒(r,ΞΈ).𝑒𝑣0 and π‘€π‘€π‘Ÿπœƒu=v=0\text{ and }w=w(r,\theta).italic_u = italic_v = 0 and italic_w = italic_w ( italic_r , italic_ΞΈ ) .

Consequently, since the dependence in the ”z” direction is eliminated, relation (2.6) has the form

(3.2) p=P⁒(ΞΈ)+Οƒβ’βˆ‡β‹…nβ†’.π‘π‘ƒπœƒβ‹…πœŽβˆ‡β†’π‘›p=P(\theta)+\sigma\nabla\cdot\vec{n}.italic_p = italic_P ( italic_ΞΈ ) + italic_Οƒ βˆ‡ β‹… overβ†’ start_ARG italic_n end_ARG .

Additionally, both the free surface and the bed will be characterized by r=R+h⁒(ΞΈ)π‘Ÿπ‘…β„Žπœƒr=R+h(\theta)italic_r = italic_R + italic_h ( italic_ΞΈ ) and r=d⁒(ΞΈ)π‘Ÿπ‘‘πœƒr=d(\theta)italic_r = italic_d ( italic_ΞΈ ), respectively.

Remark 1.

To account for geophysical factors in equatorial flows, the polar angle ΞΈπœƒ\thetaitalic_ΞΈ is confined to an interval of the form [βˆ’Ξ΅,Ξ΅]πœ€πœ€\left[-\varepsilon,\varepsilon\right][ - italic_Ξ΅ , italic_Ξ΅ ]. Selecting Ξ΅=0.016πœ€0.016\varepsilon=0.016italic_Ξ΅ = 0.016, it corresponds to a strip approximately 100 km wide centered around the equator.

From (3.1), the Euler equations becomes

(3.3) {βˆ’2⁒Ω⁒w⁒cosβ‘ΞΈβˆ’r⁒Ω2⁒cos2⁑θ=βˆ’1ρ⁒prβˆ’g2⁒Ω⁒w⁒sin⁑θ+r⁒Ω2⁒sin⁑θ⁒cos⁑θ=βˆ’1ρ⁒1r⁒pΞΈ0=βˆ’1ρ⁒pz,cases2Ξ©π‘€πœƒπ‘ŸsuperscriptΞ©2superscript2πœƒ1𝜌subscriptπ‘π‘Ÿπ‘”otherwise2Ξ©π‘€πœƒπ‘ŸsuperscriptΞ©2πœƒπœƒ1𝜌1π‘Ÿsubscriptπ‘πœƒotherwise01𝜌subscript𝑝𝑧otherwise\begin{cases}-2\Omega w\cos\theta-r\Omega^{2}\cos^{2}\theta=-\displaystyle% \frac{1}{\rho}p_{r}-g\\ 2\Omega w\sin\theta+r\Omega^{2}\sin\theta\cos\theta=\displaystyle-\frac{1}{% \rho}\frac{1}{r}p_{\theta}\\ \quad\indent\quad\indent\indent 0=-\displaystyle\frac{1}{\rho}p_{z},\end{cases}{ start_ROW start_CELL - 2 roman_Ξ© italic_w roman_cos italic_ΞΈ - italic_r roman_Ξ© start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_cos start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_ΞΈ = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG italic_p start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - italic_g end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 2 roman_Ξ© italic_w roman_sin italic_ΞΈ + italic_r roman_Ξ© start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_sin italic_ΞΈ roman_cos italic_ΞΈ = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 0 = - divide start_ARG 1 end_ARG start_ARG italic_ρ end_ARG italic_p start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW

or equivalently

(3.4) {ρ⁒(r,ΞΈ)⁒Ω⁒cos⁑θ⁒(2⁒w⁒(r,ΞΈ)+r⁒Ω⁒cos⁑θ)=pr+g⁒ρ⁒(r,ΞΈ)ρ⁒(r,ΞΈ)⁒r⁒Ω⁒sin⁑θ⁒(2⁒w⁒(r,ΞΈ)+r⁒Ω⁒cos⁑θ)=βˆ’pΞΈ0=pz.casesπœŒπ‘ŸπœƒΞ©πœƒ2π‘€π‘Ÿπœƒπ‘ŸΞ©πœƒsubscriptπ‘π‘Ÿπ‘”πœŒπ‘ŸπœƒotherwiseπœŒπ‘Ÿπœƒπ‘ŸΞ©πœƒ2π‘€π‘Ÿπœƒπ‘ŸΞ©πœƒsubscriptπ‘πœƒotherwise0subscript𝑝𝑧otherwise\begin{cases}\rho(r,\theta)\Omega\cos\theta(2w(r,\theta)+r\Omega\cos\theta)=p_% {r}+g\rho(r,\theta)\\ \rho(r,\theta)r\Omega\sin\theta(2w(r,\theta)+r\Omega\cos\theta)=-p_{\theta}\\ \quad\indent\quad\indent\indent\quad\indent 0=p_{z}.\end{cases}{ start_ROW start_CELL italic_ρ ( italic_r , italic_ΞΈ ) roman_Ξ© roman_cos italic_ΞΈ ( 2 italic_w ( italic_r , italic_ΞΈ ) + italic_r roman_Ξ© roman_cos italic_ΞΈ ) = italic_p start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + italic_g italic_ρ ( italic_r , italic_ΞΈ ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_ρ ( italic_r , italic_ΞΈ ) italic_r roman_Ξ© roman_sin italic_ΞΈ ( 2 italic_w ( italic_r , italic_ΞΈ ) + italic_r roman_Ξ© roman_cos italic_ΞΈ ) = - italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL 0 = italic_p start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT . end_CELL start_CELL end_CELL end_ROW

Letting U⁒(r,ΞΈ):=2⁒w⁒(r,ΞΈ)+r⁒Ω⁒cos⁑θassignUrπœƒ2wrπœƒrΞ©πœƒ\pazocal{U}(r,\theta):=2w(r,\theta)+r\Omega\cos\thetaroman_U ( roman_r , italic_ΞΈ ) := 2 roman_w ( roman_r , italic_ΞΈ ) + roman_r roman_Ξ© roman_cos italic_ΞΈ, if we derive the first equation with respect to ΞΈπœƒ\thetaitalic_ΞΈ and the second one with respect to r, we obtain

{(ρ⁒Ω⁒U⁒cos⁑θ)ΞΈ=pr⁒θ+g⁒ρθ(ρ⁒r⁒Ω⁒U⁒sin⁑θ)r=βˆ’pθ⁒r\left\{\begin{aligned} \displaystyle(\rho\Omega\pazocal{U}\cos\theta)_{\theta}% &=\displaystyle p_{r\theta}+g\rho_{\theta}\\ \displaystyle(\rho r\Omega\pazocal{U}\sin\theta)_{r}&=\displaystyle-p_{\theta r% }\end{aligned}\right.{ start_ROW start_CELL ( italic_ρ roman_Ξ© roman_U roman_cos italic_ΞΈ ) start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_CELL start_CELL = italic_p start_POSTSUBSCRIPT italic_r italic_ΞΈ end_POSTSUBSCRIPT + italic_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL ( italic_ρ italic_r roman_Ξ© roman_U roman_sin italic_ΞΈ ) start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT end_CELL start_CELL = - italic_p start_POSTSUBSCRIPT italic_ΞΈ italic_r end_POSTSUBSCRIPT end_CELL end_ROW

Next, we sum up the two equations to deduce

(ρ⁒Ω⁒U⁒cos⁑θ)ΞΈ+(ρ⁒r⁒Ω⁒U⁒sin⁑θ)r=g⁒ρθ,subscript𝜌ΩUπœƒπœƒsubscript𝜌rΞ©UπœƒrgsubscriptπœŒπœƒ(\rho\Omega\pazocal{U}\cos\theta)_{\theta}+(\rho r\Omega\pazocal{U}\sin\theta)% _{r}=g\rho_{\theta},( italic_ρ roman_Ξ© roman_U roman_cos italic_ΞΈ ) start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + ( italic_ρ roman_r roman_Ξ© roman_U roman_sin italic_ΞΈ ) start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT = roman_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ,

which yields

(3.5) (r⁒sin⁑θ)⁒Zr⁒(r,ΞΈ)+(cos⁑θ)⁒Zθ⁒(r,ΞΈ)=(r⁒cos⁑θ)⁒g⁒ρθ,π‘ŸπœƒsubscriptZrrπœƒπœƒsubscriptZπœƒrπœƒrπœƒgsubscriptπœŒπœƒ(r\sin\theta)\pazocal{Z}_{r}(r,\theta)+(\cos\theta)\pazocal{Z}_{\theta}(r,% \theta)=(r\cos\theta)g\rho_{\theta},( italic_r roman_sin italic_ΞΈ ) roman_Z start_POSTSUBSCRIPT roman_r end_POSTSUBSCRIPT ( roman_r , italic_ΞΈ ) + ( roman_cos italic_ΞΈ ) roman_Z start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( roman_r , italic_ΞΈ ) = ( roman_r roman_cos italic_ΞΈ ) roman_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ,

where Z⁒(r,ΞΈ):=ρ⁒r⁒Ω⁒U⁒cos⁑θassignZrπœƒπœŒrΞ©Uπœƒ\pazocal{Z}(r,\theta):=\rho r\Omega\pazocal{U}\cos\thetaroman_Z ( roman_r , italic_ΞΈ ) := italic_ρ roman_r roman_Ξ© roman_U roman_cos italic_ΞΈ.

Following the method of characteristics, we look for solutions sβ†’r~⁒(s)→𝑠~π‘Ÿπ‘ s\rightarrow\tilde{r}(s)italic_s β†’ over~ start_ARG italic_r end_ARG ( italic_s ) and sβ†’ΞΈ~⁒(s)→𝑠~πœƒπ‘ s\rightarrow\tilde{\theta}(s)italic_s β†’ over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) such that

(3.6) r~(s)β€²=r~(s)sinΞΈ~(s),\displaystyle\widetilde{r}~{}^{\prime}(s)=\widetilde{r}(s)\sin\widetilde{% \theta}(s),over~ start_ARG italic_r end_ARG start_FLOATSUPERSCRIPT β€² end_FLOATSUPERSCRIPT ( italic_s ) = over~ start_ARG italic_r end_ARG ( italic_s ) roman_sin over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) ,
ΞΈ~′⁒(s)=cos⁑θ~⁒(s).superscript~πœƒβ€²π‘ ~πœƒπ‘ \displaystyle\widetilde{\theta}^{\prime}(s)=\cos\widetilde{\theta}(s).over~ start_ARG italic_ΞΈ end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) = roman_cos over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) .

Thus, relation (3.5) is equivalent to

(3.7) dd⁒s(Z(r~(s),θ~(s))=(r~(s)cosθ~(s))gρθ(r~(s,θ~(s)).\displaystyle\frac{d}{ds}\big{(}\pazocal{Z}(\widetilde{r}(s),\widetilde{\theta% }(s))=(\widetilde{r}(s)\cos\widetilde{\theta}(s))g\rho_{\theta}(\widetilde{r}(% s_{,}\widetilde{\theta}(s)).divide start_ARG italic_d end_ARG start_ARG italic_d italic_s end_ARG ( roman_Z ( over~ start_ARG roman_r end_ARG ( roman_s ) , over~ start_ARG italic_θ end_ARG ( roman_s ) ) = ( over~ start_ARG roman_r end_ARG ( roman_s ) roman_cos over~ start_ARG italic_θ end_ARG ( roman_s ) ) roman_g italic_ρ start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT ( over~ start_ARG roman_r end_ARG ( roman_s start_POSTSUBSCRIPT , end_POSTSUBSCRIPT over~ start_ARG italic_θ end_ARG ( roman_s ) ) .

Simple computations yield r~′′⁒(s)=r~⁒(s)superscript~π‘Ÿβ€²β€²π‘ ~π‘Ÿπ‘ \widetilde{r}^{\prime\prime}(s)=\widetilde{r}(s)over~ start_ARG italic_r end_ARG start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_s ) = over~ start_ARG italic_r end_ARG ( italic_s ), leading to the solution

(3.8) r~⁒(s)=c1⁒es+c2⁒eβˆ’s,~π‘Ÿπ‘ subscript𝑐1superscript𝑒𝑠subscript𝑐2superscript𝑒𝑠\widetilde{r}(s)=c_{1}e^{s}+c_{2}e^{-s},over~ start_ARG italic_r end_ARG ( italic_s ) = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT ,

where c1,c2subscript𝑐1subscript𝑐2c_{1},c_{2}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are some real constants. Now, since r~′⁒(s)=c1⁒esβˆ’c2⁒eβˆ’ssuperscript~π‘Ÿβ€²π‘ subscript𝑐1superscript𝑒𝑠subscript𝑐2superscript𝑒𝑠\widetilde{r}^{\prime}(s)=c_{1}e^{s}-c_{2}e^{-s}over~ start_ARG italic_r end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_s ) = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT, we infer

(3.9) ΞΈ~⁒(s)=arcsin⁑c1⁒esβˆ’c2⁒eβˆ’sc1⁒es+c2⁒eβˆ’s=arcsin⁑c⁒e2⁒sβˆ’1c⁒e2⁒s+1,~πœƒπ‘ subscript𝑐1superscript𝑒𝑠subscript𝑐2superscript𝑒𝑠subscript𝑐1superscript𝑒𝑠subscript𝑐2superscript𝑒𝑠𝑐superscript𝑒2𝑠1𝑐superscript𝑒2𝑠1\widetilde{\theta}(s)=\arcsin\displaystyle\frac{c_{1}e^{s}-c_{2}e^{-s}}{c_{1}e% ^{s}+c_{2}e^{-s}}=\arcsin\displaystyle\frac{ce^{2s}-1}{ce^{2s}+1},over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) = roman_arcsin divide start_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT - italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT end_ARG start_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT end_ARG = roman_arcsin divide start_ARG italic_c italic_e start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT - 1 end_ARG start_ARG italic_c italic_e start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT + 1 end_ARG ,

where c=c1c2𝑐subscript𝑐1subscript𝑐2c=\displaystyle\frac{c_{1}}{c_{2}}italic_c = divide start_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG is constant. Returning to our equation (3.5), we note that

(3.10) dd⁒s⁒(r~⁒(s)⁒cos⁑θ~⁒(s))=0.𝑑𝑑𝑠~π‘Ÿπ‘ ~πœƒπ‘ 0\displaystyle\frac{d}{ds}(\widetilde{r}(s)\cos\widetilde{\theta}(s))=0.divide start_ARG italic_d end_ARG start_ARG italic_d italic_s end_ARG ( over~ start_ARG italic_r end_ARG ( italic_s ) roman_cos over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) ) = 0 .

Assuming, without loss of generality, that ΞΈ~⁒(0)=0~πœƒ00\widetilde{\theta}(0)=0over~ start_ARG italic_ΞΈ end_ARG ( 0 ) = 0, we find that c=1𝑐1c=1italic_c = 1, implying c1=c2subscript𝑐1subscript𝑐2c_{1}=c_{2}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. For given values of rπ‘Ÿritalic_r and ΞΈπœƒ\thetaitalic_ΞΈ, we seek s0βˆˆβ„subscript𝑠0ℝs_{0}\in\mathbb{R}italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ∈ blackboard_R such that

(3.11) ΞΈ~⁒(s0)=ΞΈ,r~⁒(s0)=r.formulae-sequence~πœƒsubscript𝑠0πœƒ~π‘Ÿsubscript𝑠0π‘Ÿ\widetilde{\theta}(s_{0})=\theta,\widetilde{r}(s_{0})=r.over~ start_ARG italic_ΞΈ end_ARG ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_ΞΈ , over~ start_ARG italic_r end_ARG ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_r .

The initial condition in (3.11) leads to e2⁒s0βˆ’1e2⁒s0+1=sin⁑θsuperscript𝑒2subscript𝑠01superscript𝑒2subscript𝑠01πœƒ\displaystyle\frac{e^{2s_{0}}-1}{e^{2s_{0}}+1}=\sin\thetadivide start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT - 1 end_ARG start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUPERSCRIPT + 1 end_ARG = roman_sin italic_ΞΈ, thus

(3.12) s0⁒(ΞΈ)=12⁒ln⁑1+sin⁑θ1βˆ’sin⁑θ,subscript𝑠0πœƒ121πœƒ1πœƒs_{0}(\theta)=\displaystyle\frac{1}{2}\ln\displaystyle\frac{1+\sin\theta}{1-% \sin\theta},italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG roman_ln divide start_ARG 1 + roman_sin italic_ΞΈ end_ARG start_ARG 1 - roman_sin italic_ΞΈ end_ARG ,

while the second condition from (3.11) leads to

c1⁒(1+sin⁑θ1βˆ’sin⁑θ+1βˆ’sin⁑θ1+sin⁑θ)=r,subscript𝑐11πœƒ1πœƒ1πœƒ1πœƒπ‘Ÿc_{1}\bigg{(}\sqrt{\displaystyle\frac{1+\sin\theta}{1-\sin\theta}}+\sqrt{% \displaystyle\frac{1-\sin\theta}{1+\sin\theta}}\bigg{)}=r,italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( square-root start_ARG divide start_ARG 1 + roman_sin italic_ΞΈ end_ARG start_ARG 1 - roman_sin italic_ΞΈ end_ARG end_ARG + square-root start_ARG divide start_ARG 1 - roman_sin italic_ΞΈ end_ARG start_ARG 1 + roman_sin italic_ΞΈ end_ARG end_ARG ) = italic_r ,

which implies that

(3.13) c1=r⁒cos⁑θ2=c2.subscript𝑐1π‘Ÿπœƒ2subscript𝑐2c_{1}=\displaystyle\frac{r\cos\theta}{2}=c_{2}.italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = divide start_ARG italic_r roman_cos italic_ΞΈ end_ARG start_ARG 2 end_ARG = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

Consequently, relations (3.6) are given by

(3.14) r~⁒(s)=r⁒cos⁑θ2⁒(es+eβˆ’s)=r⁒cos⁑θ⁒cosh⁑(s),~π‘Ÿπ‘ π‘Ÿπœƒ2superscript𝑒𝑠superscriptπ‘’π‘ π‘Ÿπœƒπ‘ \displaystyle\widetilde{r}(s)=\displaystyle\frac{r\cos\theta}{2}(e^{s}+e^{-s})% =r\cos\theta\cosh(s),over~ start_ARG italic_r end_ARG ( italic_s ) = divide start_ARG italic_r roman_cos italic_ΞΈ end_ARG start_ARG 2 end_ARG ( italic_e start_POSTSUPERSCRIPT italic_s end_POSTSUPERSCRIPT + italic_e start_POSTSUPERSCRIPT - italic_s end_POSTSUPERSCRIPT ) = italic_r roman_cos italic_ΞΈ roman_cosh ( italic_s ) ,
(3.15) ΞΈ~⁒(s)=arcsin⁑(e2⁒sβˆ’1e2⁒s+1)=arcsin⁑(tanh⁑(s)).~πœƒπ‘ superscript𝑒2𝑠1superscript𝑒2𝑠1𝑠\displaystyle\widetilde{\theta}(s)=\arcsin\bigg{(}\displaystyle\frac{e^{2s}-1}% {e^{2s}+1}\bigg{)}=\arcsin(\tanh(s)).over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) = roman_arcsin ( divide start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT - 1 end_ARG start_ARG italic_e start_POSTSUPERSCRIPT 2 italic_s end_POSTSUPERSCRIPT + 1 end_ARG ) = roman_arcsin ( roman_tanh ( italic_s ) ) .

From (3.10), we immediately derive

(3.16) r~⁒(s)⁒cos⁑θ~⁒(s)=r~⁒(0)⁒cos⁑θ~⁒(0)=r⁒cos⁑θ⁒cos⁑(0)=r⁒cos⁑θ,~π‘Ÿπ‘ ~πœƒπ‘ ~π‘Ÿ0~πœƒ0π‘Ÿπœƒ0π‘Ÿπœƒ\widetilde{r}(s)\cos\widetilde{\theta}(s)=\widetilde{r}(0)\cos\widetilde{% \theta}(0)=r\cos\theta\cos(0)=r\cos\theta,over~ start_ARG italic_r end_ARG ( italic_s ) roman_cos over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) = over~ start_ARG italic_r end_ARG ( 0 ) roman_cos over~ start_ARG italic_ΞΈ end_ARG ( 0 ) = italic_r roman_cos italic_ΞΈ roman_cos ( 0 ) = italic_r roman_cos italic_ΞΈ ,

Whence, integrating (3.7) from 00 to s0⁒(ΞΈ)subscript𝑠0πœƒs_{0}(\theta)italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ), we deduce

Z⁒(r,ΞΈ)βˆ’Z⁒(r⁒cos⁑θ,0)=g⁒r⁒cos⁑θ⁒∫0s0⁒(ΞΈ)ρθ⁒(r~⁒(s),ΞΈ~⁒(s))⁒ds.ZrπœƒZrπœƒ0grπœƒsuperscriptsubscript0subscripts0πœƒsubscriptπœŒπœƒ~rs~πœƒsdifferential-ds\pazocal{Z}(r,\theta)-\pazocal{Z}(r\cos\theta,0)=gr\cos\theta\int_{0}^{s_{0}(% \theta)}\rho_{\theta}(\widetilde{r}(s),\widetilde{\theta}(s))ds.roman_Z ( roman_r , italic_ΞΈ ) - roman_Z ( roman_r roman_cos italic_ΞΈ , 0 ) = roman_g roman_r roman_cos italic_ΞΈ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( over~ start_ARG roman_r end_ARG ( roman_s ) , over~ start_ARG italic_ΞΈ end_ARG ( roman_s ) ) roman_d roman_s .

Now, from the definitions of ZZ\pazocal{Z}roman_Z and UU\pazocal{U}roman_U, we determine the expression for the velocity w⁒(r,ΞΈ)π‘€π‘Ÿπœƒw(r,\theta)italic_w ( italic_r , italic_ΞΈ ), that is,

(3.17) w⁒(r,ΞΈ)=βˆ’Ξ©β’r⁒cos⁑θ2+12⁒ρ⁒Ω⁒(F⁒(r⁒cos⁑θ)r⁒cos⁑θ+g⁒∫0s0⁒(ΞΈ)ρθ⁒(r~⁒(s),ΞΈ~⁒(s))⁒𝑑s),π‘€π‘ŸπœƒΞ©π‘Ÿπœƒ212πœŒΞ©πΉπ‘Ÿπœƒπ‘Ÿπœƒπ‘”superscriptsubscript0subscript𝑠0πœƒsubscriptπœŒπœƒ~π‘Ÿπ‘ ~πœƒπ‘ differential-d𝑠w(r,\theta)=-\displaystyle\frac{\Omega r\cos\theta}{2}+\frac{1}{2\rho\Omega}% \left(\displaystyle\frac{F(r\cos\theta)}{r\cos\theta}+g\int_{0}^{s_{0}(\theta)% }\rho_{\theta}(\widetilde{r}(s),\widetilde{\theta}(s))ds\right),italic_w ( italic_r , italic_ΞΈ ) = - divide start_ARG roman_Ξ© italic_r roman_cos italic_ΞΈ end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 italic_ρ roman_Ξ© end_ARG ( divide start_ARG italic_F ( italic_r roman_cos italic_ΞΈ ) end_ARG start_ARG italic_r roman_cos italic_ΞΈ end_ARG + italic_g ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( over~ start_ARG italic_r end_ARG ( italic_s ) , over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) ) italic_d italic_s ) ,

where F⁒(x):=Z⁒(x,0)assign𝐹π‘₯Zx0F(x):=\pazocal{Z}(x,0)italic_F ( italic_x ) := roman_Z ( roman_x , 0 ) is an arbitrarily smooth function.

To derive the expression for pressure p𝑝pitalic_p, the first equation of (3.3) yields

prsubscriptπ‘π‘Ÿ\displaystyle p_{r}italic_p start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT =βˆ’g⁒ρ+Ω⁒ρ⁒U⁒cos⁑θabsentπ‘”πœŒΞ©πœŒUπœƒ\displaystyle=-g\rho+\Omega\rho\pazocal{U}\cos\theta= - italic_g italic_ρ + roman_Ξ© italic_ρ roman_U roman_cos italic_ΞΈ
(3.18) =βˆ’g⁒ρ+F⁒(r⁒cos⁑θ)r+g⁒cos⁑θ⁒∫0s0⁒(ΞΈ)ρθ⁒(r~⁒(s),ΞΈ~⁒(s))⁒𝑑s,absentπ‘”πœŒπΉπ‘Ÿπœƒπ‘Ÿπ‘”πœƒsuperscriptsubscript0subscript𝑠0πœƒsubscriptπœŒπœƒ~π‘Ÿπ‘ ~πœƒπ‘ differential-d𝑠\displaystyle=-g\rho+\displaystyle\frac{F(r\cos\theta)}{r}+g\cos\theta\int_{0}% ^{s_{0}(\theta)}\rho_{\theta}(\widetilde{r}(s),\widetilde{\theta}(s))ds,= - italic_g italic_ρ + divide start_ARG italic_F ( italic_r roman_cos italic_ΞΈ ) end_ARG start_ARG italic_r end_ARG + italic_g roman_cos italic_ΞΈ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( over~ start_ARG italic_r end_ARG ( italic_s ) , over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) ) italic_d italic_s ,

while from the second one we infer

pΞΈsubscriptπ‘πœƒ\displaystyle p_{\theta}italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT =βˆ’Ξ©β’r⁒ρ⁒U⁒sin⁑θabsentΞ©π‘ŸπœŒUπœƒ\displaystyle=-\Omega r\rho\pazocal{U}\sin\theta= - roman_Ξ© italic_r italic_ρ roman_U roman_sin italic_ΞΈ
(3.19) =βˆ’tan⁑θ⁒[F⁒(r⁒cos⁑θ)+g⁒r⁒cos⁑θ⁒∫0s0⁒(ΞΈ)ρθ⁒(r~⁒(s),ΞΈ~⁒(s))⁒𝑑s].absentπœƒdelimited-[]πΉπ‘Ÿπœƒπ‘”π‘Ÿπœƒsuperscriptsubscript0subscript𝑠0πœƒsubscriptπœŒπœƒ~π‘Ÿπ‘ ~πœƒπ‘ differential-d𝑠\displaystyle=-\tan\theta\Bigg{[}F(r\cos\theta)+gr\cos\theta\int_{0}^{s_{0}(% \theta)}\rho_{\theta}(\widetilde{r}(s),\widetilde{\theta}(s))ds\Bigg{]}.= - roman_tan italic_ΞΈ [ italic_F ( italic_r roman_cos italic_ΞΈ ) + italic_g italic_r roman_cos italic_ΞΈ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( over~ start_ARG italic_r end_ARG ( italic_s ) , over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) ) italic_d italic_s ] .

If we integrate (3) with respect to r, and use the substitution y=r⁒cosβ‘ΞΈπ‘¦π‘Ÿπœƒy=r\cos\thetaitalic_y = italic_r roman_cos italic_ΞΈ, we obtain

(3.20) p⁒(r,ΞΈ)=βˆ’g⁒∫arρ⁒(ΞΎ,ΞΈ)⁒𝑑ξ+∫a⁒cos⁑θr⁒cos⁑θ[F⁒(y)y+H⁒(y,ΞΈ)]⁒𝑑y+C~⁒(ΞΈ),π‘π‘Ÿπœƒπ‘”superscriptsubscriptπ‘Žπ‘ŸπœŒπœ‰πœƒdifferential-dπœ‰superscriptsubscriptπ‘Žπœƒπ‘Ÿπœƒdelimited-[]πΉπ‘¦π‘¦π»π‘¦πœƒdifferential-d𝑦~πΆπœƒp(r,\theta)=-g\int_{a}^{r}\rho(\xi,\theta)d\xi+\int_{a\cos\theta}^{r\cos\theta% }\Bigg{[}\displaystyle\frac{F(y)}{y}+H(y,\theta)\Bigg{]}dy+\widetilde{C}(% \theta),italic_p ( italic_r , italic_ΞΈ ) = - italic_g ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ + ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r roman_cos italic_ΞΈ end_POSTSUPERSCRIPT [ divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) ] italic_d italic_y + over~ start_ARG italic_C end_ARG ( italic_ΞΈ ) ,

where aπ‘Žaitalic_a is a constant, ΞΈβ†’C~⁒(ΞΈ)β†’πœƒ~πΆπœƒ\theta\rightarrow\widetilde{C}(\theta)italic_ΞΈ β†’ over~ start_ARG italic_C end_ARG ( italic_ΞΈ ) is a smooth function and

(3.21) H⁒(y,ΞΈ)=∫0s0⁒(ΞΈ)g⁒ρθ⁒(y⁒cosh⁑(s),ΞΈ~⁒(s))⁒𝑑s.π»π‘¦πœƒsuperscriptsubscript0subscript𝑠0πœƒπ‘”subscriptπœŒπœƒπ‘¦π‘ ~πœƒπ‘ differential-d𝑠H(y,\theta)=\int_{0}^{s_{0}(\theta)}g\rho_{\theta}(y\cosh(s),\widetilde{\theta% }(s))ds.italic_H ( italic_y , italic_ΞΈ ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) end_POSTSUPERSCRIPT italic_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_y roman_cosh ( italic_s ) , over~ start_ARG italic_ΞΈ end_ARG ( italic_s ) ) italic_d italic_s .

In equation (3.20), differentiating with respect to ΞΈπœƒ\thetaitalic_ΞΈ yields the expression for pΞΈsubscriptπ‘πœƒp_{\theta}italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT,

pΞΈsubscriptπ‘πœƒ\displaystyle p_{\theta}italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT =βˆ’g⁒∫arρθ⁒(ΞΎ,ΞΈ)β’π‘‘ΞΎβˆ’tan⁑θ⁒(F⁒(r⁒cos⁑θ)βˆ’F⁒(a⁒cos⁑θ))absent𝑔superscriptsubscriptπ‘Žπ‘ŸsubscriptπœŒπœƒπœ‰πœƒdifferential-dπœ‰πœƒπΉπ‘ŸπœƒπΉπ‘Žπœƒ\displaystyle=-g\int_{a}^{r}\rho_{\theta}(\xi,\theta)d\xi-\tan\theta\left(F(r% \cos\theta)-F(a\cos\theta)\right)= - italic_g ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ - roman_tan italic_ΞΈ ( italic_F ( italic_r roman_cos italic_ΞΈ ) - italic_F ( italic_a roman_cos italic_ΞΈ ) )
+∫a⁒cos⁑θr⁒cos⁑θHθ⁒(y,ΞΈ)⁒𝑑yβˆ’sin⁑θ⁒(r⁒H⁒(r⁒cos⁑θ,ΞΈ)βˆ’a⁒H⁒(a⁒cos⁑θ,ΞΈ))+C~′⁒(ΞΈ).superscriptsubscriptπ‘Žπœƒπ‘Ÿπœƒsubscriptπ»πœƒπ‘¦πœƒdifferential-dπ‘¦πœƒπ‘Ÿπ»π‘Ÿπœƒπœƒπ‘Žπ»π‘Žπœƒπœƒsuperscript~πΆβ€²πœƒ\displaystyle\quad+\int_{a\cos\theta}^{r\cos\theta}H_{\theta}(y,\theta)dy-\sin% \theta\left(r\,H(r\cos\theta,\theta)-aH(a\cos\theta,\theta)\right)+\widetilde{% C}^{\prime}(\theta).+ ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r roman_cos italic_ΞΈ end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_y , italic_ΞΈ ) italic_d italic_y - roman_sin italic_ΞΈ ( italic_r italic_H ( italic_r roman_cos italic_ΞΈ , italic_ΞΈ ) - italic_a italic_H ( italic_a roman_cos italic_ΞΈ , italic_ΞΈ ) ) + over~ start_ARG italic_C end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) .

Since

(3.22) Hθ⁒(y,ΞΈ)=g⁒ρθ⁒(y⁒cosh⁑(s0⁒(ΞΈ)),ΞΈ~⁒(s0⁒(ΞΈ)))β‹…1cos⁑θ,subscriptπ»πœƒπ‘¦πœƒβ‹…π‘”subscriptπœŒπœƒπ‘¦subscript𝑠0πœƒ~πœƒsubscript𝑠0πœƒ1πœƒH_{\theta}(y,\theta)=g\rho_{\theta}(y\cosh(s_{0}(\theta)),\widetilde{\theta}(s% _{0}(\theta)))\cdot\frac{1}{\cos\theta},italic_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_y , italic_ΞΈ ) = italic_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_y roman_cosh ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) ) , over~ start_ARG italic_ΞΈ end_ARG ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) ) ) β‹… divide start_ARG 1 end_ARG start_ARG roman_cos italic_ΞΈ end_ARG ,

and

cosh⁑(s0)=r~⁒(s0)r⁒cos⁑θ=1cos⁑θ,subscript𝑠0~π‘Ÿsubscript𝑠0π‘Ÿπœƒ1πœƒ\cosh(s_{0})=\displaystyle\frac{\widetilde{r}(s_{0})}{r\cos\theta}=% \displaystyle\frac{1}{\cos\theta},roman_cosh ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = divide start_ARG over~ start_ARG italic_r end_ARG ( italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) end_ARG start_ARG italic_r roman_cos italic_ΞΈ end_ARG = divide start_ARG 1 end_ARG start_ARG roman_cos italic_ΞΈ end_ARG ,

from (3.11) we obtain

(3.23) Hθ⁒(y,ΞΈ)=g⁒ρθ⁒(ycos⁑θ,ΞΈ)β‹…s0′⁒(ΞΈ)=gcos⁑θ⁒ρθ⁒(ycos⁑θ,ΞΈ).subscriptπ»πœƒπ‘¦πœƒβ‹…π‘”subscriptπœŒπœƒπ‘¦πœƒπœƒsuperscriptsubscript𝑠0β€²πœƒπ‘”πœƒsubscriptπœŒπœƒπ‘¦πœƒπœƒH_{\theta}(y,\theta)=g\rho_{\theta}\bigg{(}\displaystyle\frac{y}{\cos\theta},% \theta\bigg{)}\cdot s_{0}^{\prime}(\theta)=\displaystyle\frac{g}{\cos\theta}% \rho_{\theta}\bigg{(}\displaystyle\frac{y}{\cos\theta},\theta\bigg{)}.italic_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_y , italic_ΞΈ ) = italic_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( divide start_ARG italic_y end_ARG start_ARG roman_cos italic_ΞΈ end_ARG , italic_ΞΈ ) β‹… italic_s start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) = divide start_ARG italic_g end_ARG start_ARG roman_cos italic_ΞΈ end_ARG italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( divide start_ARG italic_y end_ARG start_ARG roman_cos italic_ΞΈ end_ARG , italic_ΞΈ ) .

Consequently,

(3.24) ∫a⁒cos⁑θr⁒cos⁑θHθ⁒(y,ΞΈ)⁒𝑑y=∫a⁒cos⁑θr⁒cos⁑θgcos⁑θ⁒ρθ⁒(ycos⁑θ,ΞΈ)⁒𝑑y=∫arg⁒ρθ⁒(r~,ΞΈ)⁒𝑑r~.superscriptsubscriptπ‘Žπœƒπ‘Ÿπœƒsubscriptπ»πœƒπ‘¦πœƒdifferential-d𝑦superscriptsubscriptπ‘Žπœƒπ‘Ÿπœƒπ‘”πœƒsubscriptπœŒπœƒπ‘¦πœƒπœƒdifferential-d𝑦superscriptsubscriptπ‘Žπ‘Ÿπ‘”subscriptπœŒπœƒ~π‘Ÿπœƒdifferential-d~π‘Ÿ\int_{a\cos\theta}^{r\cos\theta}H_{\theta}(y,\theta)dy=\int_{a\cos\theta}^{r% \cos\theta}\displaystyle\frac{g}{\cos\theta}\rho_{\theta}\bigg{(}\frac{y}{\cos% \theta},\theta\bigg{)}dy=\int_{a}^{r}g\rho_{\theta}(\widetilde{r},\theta)d% \widetilde{r}.∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r roman_cos italic_ΞΈ end_POSTSUPERSCRIPT italic_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_y , italic_ΞΈ ) italic_d italic_y = ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r roman_cos italic_ΞΈ end_POSTSUPERSCRIPT divide start_ARG italic_g end_ARG start_ARG roman_cos italic_ΞΈ end_ARG italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( divide start_ARG italic_y end_ARG start_ARG roman_cos italic_ΞΈ end_ARG , italic_ΞΈ ) italic_d italic_y = ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_g italic_ρ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( over~ start_ARG italic_r end_ARG , italic_ΞΈ ) italic_d over~ start_ARG italic_r end_ARG .

Hence, we derive the expression for pΞΈsubscriptπ‘πœƒp_{\theta}italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT given by

pΞΈsubscriptπ‘πœƒ\displaystyle p_{\theta}italic_p start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT =βˆ’F⁒(r⁒cos⁑θ)⁒tan⁑θ+tan⁑θ⁒F⁒(a⁒cos⁑θ)βˆ’r⁒sin⁑θ⁒H⁒(r⁒cos⁑θ,ΞΈ)absentπΉπ‘ŸπœƒπœƒπœƒπΉπ‘Žπœƒπ‘Ÿπœƒπ»π‘Ÿπœƒπœƒ\displaystyle=-F(r\cos\theta)\tan\theta+\tan\theta\,F(a\cos\theta)-r\sin\theta% \,H(r\cos\theta,\theta)= - italic_F ( italic_r roman_cos italic_ΞΈ ) roman_tan italic_ΞΈ + roman_tan italic_ΞΈ italic_F ( italic_a roman_cos italic_ΞΈ ) - italic_r roman_sin italic_ΞΈ italic_H ( italic_r roman_cos italic_ΞΈ , italic_ΞΈ )
(3.25) +a⁒sin⁑θ⁒H⁒(a⁒cos⁑θ,ΞΈ)+C~′⁒(ΞΈ).π‘Žπœƒπ»π‘Žπœƒπœƒsuperscript~πΆβ€²πœƒ\displaystyle\quad+a\,\sin\theta\,H(a\cos\theta,\theta)+\widetilde{C}^{\prime}% (\theta).+ italic_a roman_sin italic_ΞΈ italic_H ( italic_a roman_cos italic_ΞΈ , italic_ΞΈ ) + over~ start_ARG italic_C end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) .

From the formulas (3.25) and (3), we deduce

C~′⁒(ΞΈ)+tan⁑θ⁒F⁒(a⁒cos⁑θ)+a⁒sin⁑θ⁒H⁒(a⁒cos⁑θ,ΞΈ)=0,superscript~πΆβ€²πœƒπœƒπΉπ‘Žπœƒπ‘Žπœƒπ»π‘Žπœƒπœƒ0\widetilde{C}^{\prime}(\theta)+\tan\theta\,F(a\cos\theta)+a\sin\theta\,H(a\cos% \theta,\theta)=0,over~ start_ARG italic_C end_ARG start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) + roman_tan italic_ΞΈ italic_F ( italic_a roman_cos italic_ΞΈ ) + italic_a roman_sin italic_ΞΈ italic_H ( italic_a roman_cos italic_ΞΈ , italic_ΞΈ ) = 0 ,

which gives,

(3.26) C~⁒(ΞΈ)=Aβˆ’βˆ«0ΞΈtan⁑ξ⁒F⁒(a⁒cos⁑ξ)β’π‘‘ΞΎβˆ’a⁒∫0ΞΈsin⁑ξ⁒H⁒(a⁒cos⁑ξ,ΞΎ)⁒𝑑ξ.~πΆπœƒπ΄superscriptsubscript0πœƒπœ‰πΉπ‘Žπœ‰differential-dπœ‰π‘Žsuperscriptsubscript0πœƒπœ‰π»π‘Žπœ‰πœ‰differential-dπœ‰\widetilde{C}(\theta)=A-\int_{0}^{\theta}\tan\xi\,F(a\cos\xi)d\xi-a\int_{0}^{% \theta}\sin\xi\,H(a\cos\xi,\xi)d\xi.over~ start_ARG italic_C end_ARG ( italic_ΞΈ ) = italic_A - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT roman_tan italic_ΞΎ italic_F ( italic_a roman_cos italic_ΞΎ ) italic_d italic_ΞΎ - italic_a ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT roman_sin italic_ΞΎ italic_H ( italic_a roman_cos italic_ΞΎ , italic_ΞΎ ) italic_d italic_ΞΎ .

From all the previous results, we derive the formula for the pressure,

(3.27) p⁒(r,ΞΈ)π‘π‘Ÿπœƒ\displaystyle p(r,\theta)italic_p ( italic_r , italic_ΞΈ ) =Aβˆ’g⁒∫arρ⁒(ΞΎ,ΞΈ)⁒𝑑ξ+∫a⁒cos⁑θr⁒cos⁑θ[F⁒(y)y+H⁒(y,ΞΈ)]⁒𝑑yabsent𝐴𝑔superscriptsubscriptπ‘Žπ‘ŸπœŒπœ‰πœƒdifferential-dπœ‰superscriptsubscriptπ‘Žπœƒπ‘Ÿπœƒdelimited-[]πΉπ‘¦π‘¦π»π‘¦πœƒdifferential-d𝑦\displaystyle=A-g\int_{a}^{r}\rho(\xi,\theta)d\xi+\int_{a\cos\theta}^{r\cos% \theta}\Bigg{[}\displaystyle\frac{F(y)}{y}+H(y,\theta)\Bigg{]}dy= italic_A - italic_g ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ + ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r roman_cos italic_ΞΈ end_POSTSUPERSCRIPT [ divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) ] italic_d italic_y
βˆ’βˆ«0ΞΈtan⁑ξ⁒F⁒(a⁒cos⁑ξ)β’π‘‘ΞΎβˆ’a⁒∫0ΞΈsin⁑ξ⁒H⁒(a⁒cos⁑ξ,ΞΎ)⁒𝑑ξ.superscriptsubscript0πœƒπœ‰πΉπ‘Žπœ‰differential-dπœ‰π‘Žsuperscriptsubscript0πœƒπœ‰π»π‘Žπœ‰πœ‰differential-dπœ‰\displaystyle\quad-\int_{0}^{\theta}\tan\xi\,F(a\cos\xi)d\xi-a\int_{0}^{\theta% }\sin\xi\,H(a\cos\xi,\xi)d\xi.- ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT roman_tan italic_ΞΎ italic_F ( italic_a roman_cos italic_ΞΎ ) italic_d italic_ΞΎ - italic_a ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT roman_sin italic_ΞΎ italic_H ( italic_a roman_cos italic_ΞΎ , italic_ΞΎ ) italic_d italic_ΞΎ .

3.1. On the dynamic conditions

The next step is to study the dynamic conditions (3.2) on the free surface r=R+h⁒(ΞΈ)π‘Ÿπ‘…β„Žπœƒr=R+h(\theta)italic_r = italic_R + italic_h ( italic_ΞΈ ). The normal vector to a surface H⁒(r,ΞΈ,z)=0π»π‘Ÿπœƒπ‘§0H(r,\theta,z)=0italic_H ( italic_r , italic_ΞΈ , italic_z ) = 0 (with H𝐻Hitalic_H unknown), is given by

(3.28) Nβ†’=Hr⁒eβ†’r+1r⁒Hθ⁒eβ†’ΞΈ+Hz⁒eβ†’z.→𝑁subscriptπ»π‘Ÿsubscriptβ†’π‘’π‘Ÿ1π‘Ÿsubscriptπ»πœƒsubscriptβ†’π‘’πœƒsubscript𝐻𝑧subscript→𝑒𝑧\vec{N}=H_{r}\vec{e}_{r}+\displaystyle\frac{1}{r}H_{\theta}\vec{e}_{\theta}+H_% {z}\vec{e}_{z}.overβ†’ start_ARG italic_N end_ARG = italic_H start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG italic_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT + italic_H start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT .

Given that the kinematic boundary condition on the free surface implies H⁒(r,ΞΈ,z)=rβˆ’Rβˆ’h⁒(ΞΈ)π»π‘Ÿπœƒπ‘§π‘Ÿπ‘…β„ŽπœƒH(r,\theta,z)=r-R-h(\theta)italic_H ( italic_r , italic_ΞΈ , italic_z ) = italic_r - italic_R - italic_h ( italic_ΞΈ ), the normal vector is

Nβ†’=eβ†’rβˆ’hΞΈr⁒e→θ→𝑁subscriptβ†’π‘’π‘Ÿsubscriptβ„Žπœƒπ‘Ÿsubscriptβ†’π‘’πœƒ\vec{N}=\vec{e}_{r}-\displaystyle\frac{h_{\theta}}{r}\vec{e}_{\theta}overβ†’ start_ARG italic_N end_ARG = overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_ARG start_ARG italic_r end_ARG overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT

Therefore, the pointing unit normal vector is

nβ†’=Nβ†’βˆ₯Nβ†’βˆ₯=rr2+hΞΈ2β‹…Nβ†’=rr2+hΞΈ2⁒eβ†’rβˆ’hΞΈr2+hΞΈ2⁒e→θ→𝑛→𝑁delimited-βˆ₯βˆ₯β†’π‘β‹…π‘Ÿsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ2β†’π‘π‘Ÿsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ2subscriptβ†’π‘’π‘Ÿsubscriptβ„Žπœƒsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ2subscriptβ†’π‘’πœƒ\vec{n}=\displaystyle\frac{\vec{N}}{\lVert\vec{N}\rVert}=\displaystyle\frac{r}% {\sqrt{r^{2}+{h_{\theta}}^{2}}}\cdot\vec{N}=\displaystyle\frac{r}{\sqrt{r^{2}+% {h_{\theta}}^{2}}}\vec{e}_{r}-\displaystyle\frac{h_{\theta}}{\sqrt{r^{2}+{h_{% \theta}}^{2}}}\vec{e}_{\theta}overβ†’ start_ARG italic_n end_ARG = divide start_ARG overβ†’ start_ARG italic_N end_ARG end_ARG start_ARG βˆ₯ overβ†’ start_ARG italic_N end_ARG βˆ₯ end_ARG = divide start_ARG italic_r end_ARG start_ARG square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG β‹… overβ†’ start_ARG italic_N end_ARG = divide start_ARG italic_r end_ARG start_ARG square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT - divide start_ARG italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG overβ†’ start_ARG italic_e end_ARG start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT

Moreover, the divergence of n→→𝑛\vec{n}overβ†’ start_ARG italic_n end_ARG is

(3.29) βˆ‡β‹…nβ†’β‹…βˆ‡β†’π‘›\displaystyle\nabla\cdot\vec{n}βˆ‡ β‹… overβ†’ start_ARG italic_n end_ARG =1rβ’βˆ‚r(r⁒nr)+1rβ’βˆ‚ΞΈ(nΞΈ)+βˆ‚z(nz)absent1π‘Ÿsubscriptπ‘Ÿπ‘Ÿsubscriptπ‘›π‘Ÿ1π‘Ÿsubscriptπœƒsubscriptπ‘›πœƒsubscript𝑧subscript𝑛𝑧\displaystyle=\displaystyle\frac{1}{r}\partial_{r}(rn_{r})+\displaystyle\frac{% 1}{r}\partial_{\theta}(n_{\theta})+\partial_{z}(n_{z})= divide start_ARG 1 end_ARG start_ARG italic_r end_ARG βˆ‚ start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ( italic_r italic_n start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT ) + divide start_ARG 1 end_ARG start_ARG italic_r end_ARG βˆ‚ start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT ) + βˆ‚ start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT ( italic_n start_POSTSUBSCRIPT italic_z end_POSTSUBSCRIPT )
(3.30) =1r⁒(rr2+hΞΈ2+r⁒hΞΈ2(r2+hΞΈ2)32)βˆ’1rβ‹…r2⁒hθ⁒θ(r2+hΞΈ2)32absent1π‘Ÿπ‘Ÿsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ2π‘Ÿsuperscriptsubscriptβ„Žπœƒ2superscriptsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ232β‹…1π‘Ÿsuperscriptπ‘Ÿ2subscriptβ„Žπœƒπœƒsuperscriptsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ232\displaystyle=\displaystyle\frac{1}{r}\bigg{(}\displaystyle\frac{r}{\sqrt{r^{2% }+h_{\theta}^{2}}}+\frac{rh_{\theta}^{2}}{(r^{2}+h_{\theta}^{2})^{\frac{3}{2}}% }\bigg{)}-\displaystyle\frac{1}{r}\cdot\frac{r^{2}h_{\theta\theta}}{(r^{2}+h_{% \theta}^{2})^{\frac{3}{2}}}= divide start_ARG 1 end_ARG start_ARG italic_r end_ARG ( divide start_ARG italic_r end_ARG start_ARG square-root start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG + divide start_ARG italic_r italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ) - divide start_ARG 1 end_ARG start_ARG italic_r end_ARG β‹… divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT end_ARG start_ARG ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG
=r2+2⁒hΞΈ2(r2+hΞΈ2)32βˆ’r⁒hθ⁒θ(r2+hΞΈ2)32absentsuperscriptπ‘Ÿ22superscriptsubscriptβ„Žπœƒ2superscriptsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ232π‘Ÿsubscriptβ„Žπœƒπœƒsuperscriptsuperscriptπ‘Ÿ2superscriptsubscriptβ„Žπœƒ232\displaystyle=\frac{r^{2}+2h_{\theta}^{2}}{(r^{2}+h_{\theta}^{2})^{\frac{3}{2}% }}-\frac{rh_{\theta\theta}}{(r^{2}+h_{\theta}^{2})^{\frac{3}{2}}}= divide start_ARG italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_r italic_h start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT end_ARG start_ARG ( italic_r start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG
(3.31) =(R+h⁒(ΞΈ))2+2⁒hΞΈ2((R+h⁒(ΞΈ))2+hΞΈ2)32βˆ’hθ⁒θ⁒(R+h⁒(ΞΈ))2((R+h⁒(ΞΈ))2+hΞΈ2)32.absentsuperscriptπ‘…β„Žπœƒ22superscriptsubscriptβ„Žπœƒ2superscriptsuperscriptπ‘…β„Žπœƒ2superscriptsubscriptβ„Žπœƒ232subscriptβ„Žπœƒπœƒsuperscriptπ‘…β„Žπœƒ2superscriptsuperscriptπ‘…β„Žπœƒ2superscriptsubscriptβ„Žπœƒ232\displaystyle=\frac{(R+h(\theta))^{2}+2h_{\theta}^{2}}{((R+h(\theta))^{2}+h_{% \theta}^{2})^{\frac{3}{2}}}-\frac{h_{\theta\theta}(R+h(\theta))^{2}}{((R+h(% \theta))^{2}+h_{\theta}^{2})^{\frac{3}{2}}}.= divide start_ARG ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_h start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG .

From the dynamic boundary condition (3.2), it follows that

P⁒(ΞΈ)=p⁒(r,ΞΈ)βˆ’Οƒβ’βˆ‡β‹…nβ†’.π‘ƒπœƒπ‘π‘Ÿπœƒβ‹…πœŽβˆ‡β†’π‘›P(\theta)=p(r,\theta)-\sigma\nabla\cdot\vec{n}.italic_P ( italic_ΞΈ ) = italic_p ( italic_r , italic_ΞΈ ) - italic_Οƒ βˆ‡ β‹… overβ†’ start_ARG italic_n end_ARG .

Therefore, we obtain the following Bernoulli-type relation:

(3.32) P⁒(ΞΈ)π‘ƒπœƒ\displaystyle P(\theta)italic_P ( italic_ΞΈ ) =Aβˆ’g⁒∫arρ⁒(ΞΎ,ΞΈ)⁒𝑑ξ+∫a⁒cos⁑θr⁒cos⁑θ[F⁒(y)y+H⁒(y,ΞΈ)]⁒𝑑yabsent𝐴𝑔superscriptsubscriptπ‘Žπ‘ŸπœŒπœ‰πœƒdifferential-dπœ‰superscriptsubscriptπ‘Žπœƒπ‘Ÿπœƒdelimited-[]πΉπ‘¦π‘¦π»π‘¦πœƒdifferential-d𝑦\displaystyle=A-g\int_{a}^{r}\rho(\xi,\theta)d\xi+\int_{a\cos\theta}^{r\cos% \theta}\Bigg{[}\displaystyle\frac{F(y)}{y}+H(y,\theta)\Bigg{]}dy= italic_A - italic_g ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ + ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_r roman_cos italic_ΞΈ end_POSTSUPERSCRIPT [ divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) ] italic_d italic_y
βˆ’βˆ«0ΞΈtan⁑ξ⁒F⁒(a⁒cos⁑ξ)β’π‘‘ΞΎβˆ’βˆ«0ΞΈa⁒sin⁑ξ⁒H⁒(a⁒cos⁑ξ,ΞΎ)⁒𝑑ξsuperscriptsubscript0πœƒπœ‰πΉπ‘Žπœ‰differential-dπœ‰superscriptsubscript0πœƒπ‘Žπœ‰π»π‘Žπœ‰πœ‰differential-dπœ‰\displaystyle\quad-\int_{0}^{\theta}\tan\xi\,F(a\cos\xi)d\xi-\int_{0}^{\theta}% a\sin\xi\,H(a\cos\xi,\xi)d\xi- ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT roman_tan italic_ΞΎ italic_F ( italic_a roman_cos italic_ΞΎ ) italic_d italic_ΞΎ - ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT italic_a roman_sin italic_ΞΎ italic_H ( italic_a roman_cos italic_ΞΎ , italic_ΞΎ ) italic_d italic_ΞΎ
(3.33) βˆ’Οƒβ‹…[(R+h⁒(ΞΈ))2+2⁒hΞΈ2((R+h⁒(ΞΈ))2+hΞΈ2)32βˆ’hθ⁒θ⁒(R+h⁒(ΞΈ))2((R+h⁒(ΞΈ))2+hΞΈ2)32].β‹…πœŽdelimited-[]superscriptπ‘…β„Žπœƒ22superscriptsubscriptβ„Žπœƒ2superscriptsuperscriptπ‘…β„Žπœƒ2superscriptsubscriptβ„Žπœƒ232subscriptβ„Žπœƒπœƒsuperscriptπ‘…β„Žπœƒ2superscriptsuperscriptπ‘…β„Žπœƒ2superscriptsubscriptβ„Žπœƒ232\displaystyle\quad-\sigma\cdot\Bigg{[}\frac{(R+h(\theta))^{2}+2h_{\theta}^{2}}% {((R+h(\theta))^{2}+h_{\theta}^{2})^{\frac{3}{2}}}-\frac{h_{\theta\theta}(R+h(% \theta))^{2}}{((R+h(\theta))^{2}+h_{\theta}^{2})^{\frac{3}{2}}}\Bigg{]}.- italic_Οƒ β‹… [ divide start_ARG ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG - divide start_ARG italic_h start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( italic_R + italic_h ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_h start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ] .

To establish the existence of solutions, we apply the implicit function theorem. In order to accomplish this, firstly it is necessary to non-dimensionalize the equation (3.32). In this way, the physical quantities can be easily compared in a relevant way. Dividing throughout by atmospheric pressure Pa⁒t⁒msubscriptπ‘ƒπ‘Žπ‘‘π‘šP_{atm}italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT yields the problem

(3.34) P⁒(ΞΈ)Pπœƒ\displaystyle\pazocal{P}(\theta)roman_P ( italic_ΞΈ ) =βˆ’gPa⁒t⁒m⁒∫a(1+H⁒(ΞΈ))⁒Rρ⁒(ΞΎ,ΞΈ)⁒𝑑ξ+∫a⁒cos⁑θ(1+H⁒(ΞΈ))⁒R⁒cos⁑θ[F⁒(y)y+H⁒(y,ΞΈ)]⁒𝑑yabsent𝑔subscriptπ‘ƒπ‘Žπ‘‘π‘šsuperscriptsubscriptπ‘Ž1HπœƒRπœŒπœ‰πœƒdifferential-dπœ‰superscriptsubscriptπ‘Žπœƒ1HπœƒRπœƒdelimited-[]πΉπ‘¦π‘¦π»π‘¦πœƒdifferential-d𝑦\displaystyle=-\frac{g}{P_{atm}}\int_{a}^{(1+\pazocal{H}(\theta))R}\rho(\xi,% \theta)d\xi+\int_{a\cos\theta}^{(1+\pazocal{H}(\theta))R\cos\theta}\Bigg{[}% \frac{F(y)}{y}+H(y,\theta)\Bigg{]}dy= - divide start_ARG italic_g end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) roman_R end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ + ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) roman_R roman_cos italic_ΞΈ end_POSTSUPERSCRIPT [ divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) ] italic_d italic_y
βˆ’ΟƒR⁒Pa⁒t⁒mβ‹…[(1+H⁒(ΞΈ))2+2⁒HΞΈ2((1+H⁒(ΞΈ))2+HΞΈ2)32βˆ’Hθ⁒θ⁒(1+H⁒(ΞΈ))2((1+H⁒(ΞΈ))2+HΞΈ2)32]+C~⁒(ΞΈ)Pa⁒t⁒m,β‹…πœŽπ‘…subscriptπ‘ƒπ‘Žπ‘‘π‘šdelimited-[]superscript1Hπœƒ22superscriptsubscriptHπœƒ2superscriptsuperscript1Hπœƒ2superscriptsubscriptHπœƒ232subscriptHπœƒπœƒsuperscript1Hπœƒ2superscriptsuperscript1Hπœƒ2superscriptsubscriptHπœƒ232~πΆπœƒsubscriptπ‘ƒπ‘Žπ‘‘π‘š\displaystyle\quad-\frac{\sigma}{RP_{atm}}\cdot\Bigg{[}\frac{(1+\pazocal{H}(% \theta))^{2}+2\pazocal{H}_{\theta}^{2}}{((1+\pazocal{H}(\theta))^{2}+\pazocal{% H}_{\theta}^{2})^{\frac{3}{2}}}-\frac{\pazocal{H}_{\theta\theta}(1+\pazocal{H}% (\theta))^{2}}{((1+\pazocal{H}(\theta))^{2}+\pazocal{H}_{\theta}^{2})^{\frac{3% }{2}}}\Bigg{]}+\frac{\widetilde{C}(\theta)}{P_{atm}},- divide start_ARG italic_Οƒ end_ARG start_ARG italic_R italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG β‹… [ divide start_ARG ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG - divide start_ARG roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ] + divide start_ARG over~ start_ARG italic_C end_ARG ( italic_ΞΈ ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ,

where the non-dimensionalized functions are defined through

H⁒(ΞΈ):=h⁒(ΞΈ)R,P⁒(ΞΈ):=P⁒(ΞΈ)Pa⁒t⁒m.formulae-sequenceassignHπœƒhπœƒRassignPπœƒPπœƒsubscriptPatm\pazocal{H}(\theta):=\frac{h(\theta)}{R},\pazocal{P}(\theta):=\frac{P(\theta)}% {P_{atm}}.roman_H ( italic_ΞΈ ) := divide start_ARG roman_h ( italic_ΞΈ ) end_ARG start_ARG roman_R end_ARG , roman_P ( italic_ΞΈ ) := divide start_ARG roman_P ( italic_ΞΈ ) end_ARG start_ARG roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG .

3.2. Solutions describing the free surface

To study the problem (3.34), we represent it as a functional equation for a more straightforward analytical study, that is, we look for nontrivial solutions of the problem

(3.35) F⁒(H,P)=0,FHP0\pazocal{F}(\pazocal{H},\pazocal{P})=0,roman_F ( roman_H , roman_P ) = 0 ,

where

(3.36) F⁒(H,P)FHP\displaystyle\pazocal{F}(\pazocal{H},\pazocal{P})roman_F ( roman_H , roman_P ) :=βˆ’gPa⁒t⁒m⁒∫a(1+H⁒(ΞΈ))⁒Rρ⁒(r~,ΞΈ)⁒𝑑r~+∫a⁒cos⁑θ(1+H⁒(ΞΈ))⁒R⁒cos⁑θ[F⁒(y)y+H⁒(y,ΞΈ)]⁒𝑑y+C~⁒(ΞΈ)Pa⁒t⁒massignabsent𝑔subscriptπ‘ƒπ‘Žπ‘‘π‘šsuperscriptsubscriptπ‘Ž1HπœƒR𝜌~π‘Ÿπœƒdifferential-d~π‘Ÿsuperscriptsubscriptπ‘Žπœƒ1HπœƒRπœƒdelimited-[]πΉπ‘¦π‘¦π»π‘¦πœƒdifferential-d𝑦~πΆπœƒsubscriptπ‘ƒπ‘Žπ‘‘π‘š\displaystyle:=-\frac{g}{P_{atm}}\int_{a}^{(1+\pazocal{H}(\theta))R}\rho(% \widetilde{r},\theta)d\widetilde{r}+\int_{a\cos\theta}^{(1+\pazocal{H}(\theta)% )R\cos\theta}\Bigg{[}\frac{F(y)}{y}+H(y,\theta)\Bigg{]}dy+\frac{\widetilde{C}(% \theta)}{P_{atm}}:= - divide start_ARG italic_g end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) roman_R end_POSTSUPERSCRIPT italic_ρ ( over~ start_ARG italic_r end_ARG , italic_ΞΈ ) italic_d over~ start_ARG italic_r end_ARG + ∫ start_POSTSUBSCRIPT italic_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) roman_R roman_cos italic_ΞΈ end_POSTSUPERSCRIPT [ divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) ] italic_d italic_y + divide start_ARG over~ start_ARG italic_C end_ARG ( italic_ΞΈ ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG
βˆ’ΟƒR⁒Pa⁒t⁒mβ‹…[(1+H⁒(ΞΈ))2+2⁒HΞΈ2((1+H⁒(ΞΈ))2+HΞΈ2)32βˆ’Hθ⁒θ⁒(1+H⁒(ΞΈ))2((1+H⁒(ΞΈ))2+HΞΈ2)32]βˆ’P⁒(ΞΈ).β‹…πœŽπ‘…subscriptπ‘ƒπ‘Žπ‘‘π‘šdelimited-[]superscript1Hπœƒ22superscriptsubscriptHπœƒ2superscriptsuperscript1Hπœƒ2superscriptsubscriptHπœƒ232subscriptHπœƒπœƒsuperscript1Hπœƒ2superscriptsuperscript1Hπœƒ2superscriptsubscriptHπœƒ232Pπœƒ\displaystyle\quad-\frac{\sigma}{RP_{atm}}\cdot\Bigg{[}\frac{(1+\pazocal{H}(% \theta))^{2}+2\pazocal{H}_{\theta}^{2}}{((1+\pazocal{H}(\theta))^{2}+\pazocal{% H}_{\theta}^{2})^{\frac{3}{2}}}-\frac{\pazocal{H}_{\theta\theta}(1+\pazocal{H}% (\theta))^{2}}{((1+\pazocal{H}(\theta))^{2}+\pazocal{H}_{\theta}^{2})^{\frac{3% }{2}}}\Bigg{]}-\pazocal{P}(\theta).- divide start_ARG italic_Οƒ end_ARG start_ARG italic_R italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG β‹… [ divide start_ARG ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG - divide start_ARG roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ] - roman_P ( italic_ΞΈ ) .

Clearly, the functional F:C2⁒[0,Ξ΅]Γ—C⁒[0,Ξ΅]β†’C⁒[0,Ξ΅]:Fβ†’superscriptC20πœ€C0πœ€C0πœ€\pazocal{F}\colon C^{2}[0,\varepsilon]\times C[0,\varepsilon]\rightarrow C[0,\varepsilon]roman_F : roman_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ 0 , italic_Ξ΅ ] Γ— roman_C [ 0 , italic_Ξ΅ ] β†’ roman_C [ 0 , italic_Ξ΅ ] is a continuous and differentiable mapping.

The main goal is to relate variations of the pressure of the free surface to variations of the shape of the free surface. Setting H≑0H0\pazocal{H}\equiv 0roman_H ≑ 0 in (3.34), it defines the situation of an undisturbed free surface, following the curvature of the Earth, away from the Equator. This implies

(3.37) F⁒(0,P0)=0,F0subscriptP00\pazocal{F}(0,\pazocal{P}_{0})=0,roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0 ,

where the surface pressure distribution required to preserve the undisturbed shape is

(3.38) P0⁒(ΞΈ)=βˆ’gPa⁒t⁒m⁒∫aRρ⁒(ΞΎ,ΞΈ)⁒dΞΎ+1Pa⁒t⁒m⁒∫a⁒cos⁑θR⁒cos⁑θ[F⁒(y)y+H⁒(y,ΞΈ)]⁒dy+C~⁒(ΞΈ)Pa⁒t⁒mβˆ’ΟƒR⁒Pa⁒t⁒m.subscriptP0πœƒgsubscriptPatmsuperscriptsubscriptaRπœŒπœ‰πœƒdifferential-dπœ‰1subscriptPatmsuperscriptsubscriptaπœƒRπœƒdelimited-[]FyyHyπœƒdifferential-dy~CπœƒsubscriptPatm𝜎RsubscriptPatm\pazocal{P}_{0}(\theta)=-\frac{g}{P_{atm}}\int_{a}^{R}\rho(\xi,\theta)d\xi+% \frac{1}{P_{atm}}\int_{a\cos\theta}^{R\cos\theta}\Bigg{[}\frac{F(y)}{y}+H(y,% \theta)\Bigg{]}dy+\frac{\widetilde{C}(\theta)}{P_{atm}}-\frac{\sigma}{RP_{atm}}.roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ΞΈ ) = - divide start_ARG roman_g end_ARG start_ARG roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT roman_a end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_R end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) roman_d italic_ΞΎ + divide start_ARG 1 end_ARG start_ARG roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT roman_a roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_R roman_cos italic_ΞΈ end_POSTSUPERSCRIPT [ divide start_ARG roman_F ( roman_y ) end_ARG start_ARG roman_y end_ARG + roman_H ( roman_y , italic_ΞΈ ) ] roman_d roman_y + divide start_ARG over~ start_ARG roman_C end_ARG ( italic_ΞΈ ) end_ARG start_ARG roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG - divide start_ARG italic_Οƒ end_ARG start_ARG roman_R roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG .

In the subsequent, we analyze the FrΓ©chet derivative of FF\pazocal{F}roman_F with respect to the first argument. One has,

F⁒(s⁒H,P0)βˆ’F⁒(0,P0)FsHsubscriptP0F0subscriptP0\displaystyle\pazocal{F}(s\pazocal{H},\pazocal{P}_{0})-\pazocal{F}(0,\pazocal{% P}_{0})roman_F ( roman_s roman_H , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) - roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) =βˆ’gPa⁒t⁒m⁒∫R(1+s⁒H⁒(ΞΈ))⁒Rρ⁒(ΞΎ,ΞΈ)⁒𝑑ξabsent𝑔subscriptπ‘ƒπ‘Žπ‘‘π‘šsuperscriptsubscript𝑅1𝑠HπœƒRπœŒπœ‰πœƒdifferential-dπœ‰\displaystyle=-\frac{g}{P_{atm}}\int_{R}^{(1+s\pazocal{H}(\theta))R}\rho(\xi,% \theta)d\xi= - divide start_ARG italic_g end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + italic_s roman_H ( italic_ΞΈ ) ) roman_R end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ
+1Pa⁒t⁒m⁒∫R⁒cos⁑θ(1+s⁒H⁒(ΞΈ))⁒R[F⁒(y)y+H⁒(y,ΞΈ)]⁒𝑑y1subscriptπ‘ƒπ‘Žπ‘‘π‘šsuperscriptsubscriptπ‘…πœƒ1𝑠HπœƒRdelimited-[]πΉπ‘¦π‘¦π»π‘¦πœƒdifferential-d𝑦\displaystyle\quad+\frac{1}{P_{atm}}\int_{R\cos\theta}^{(1+s\pazocal{H}(\theta% ))R}\Bigg{[}\frac{F(y)}{y}+H(y,\theta)\Bigg{]}dy+ divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_R roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + italic_s roman_H ( italic_ΞΈ ) ) roman_R end_POSTSUPERSCRIPT [ divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) ] italic_d italic_y
βˆ’ΟƒR⁒Pa⁒t⁒m⁒(J⁒(s⁒H)βˆ’J⁒(0)),πœŽπ‘…subscriptπ‘ƒπ‘Žπ‘‘π‘šπ½π‘ HJ0\displaystyle\quad-\frac{\sigma}{RP_{atm}}\left(J(s\pazocal{H})-J(0)\right),- divide start_ARG italic_Οƒ end_ARG start_ARG italic_R italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ( italic_J ( italic_s roman_H ) - roman_J ( 0 ) ) ,

where

J⁒(H):=(1+H⁒(ΞΈ))2+2⁒HΞΈ2((1+H⁒(ΞΈ))2+HΞΈ2)32βˆ’Hθ⁒θ⁒(1+H⁒(ΞΈ))2((1+H⁒(ΞΈ))2+HΞΈ2)32.assign𝐽Hsuperscript1Hπœƒ22superscriptsubscriptHπœƒ2superscriptsuperscript1Hπœƒ2superscriptsubscriptHπœƒ232subscriptHπœƒπœƒsuperscript1Hπœƒ2superscriptsuperscript1Hπœƒ2superscriptsubscriptHπœƒ232J(\pazocal{H}):=\frac{(1+\pazocal{H}(\theta))^{2}+2\pazocal{H}_{\theta}^{2}}{(% (1+\pazocal{H}(\theta))^{2}+\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}}-\frac{% \pazocal{H}_{\theta\theta}(1+\pazocal{H}(\theta))^{2}}{((1+\pazocal{H}(\theta)% )^{2}+\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}}.italic_J ( roman_H ) := divide start_ARG ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + 2 roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG - divide start_ARG roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG .

From (3.20) we find,

F⁒(y)y+H⁒(y,ΞΈ)=(2⁒w⁒(r,ΞΈ)+Ω⁒cos⁑θ)⋅Ω⁒ρ⁒(r,ΞΈ),πΉπ‘¦π‘¦π»π‘¦πœƒβ‹…2π‘€π‘ŸπœƒΞ©πœƒΞ©πœŒπ‘Ÿπœƒ\frac{F(y)}{y}+H(y,\theta)=(2w(r,\theta)+\Omega\cos\theta)\cdot\Omega\rho(r,% \theta),divide start_ARG italic_F ( italic_y ) end_ARG start_ARG italic_y end_ARG + italic_H ( italic_y , italic_ΞΈ ) = ( 2 italic_w ( italic_r , italic_ΞΈ ) + roman_Ξ© roman_cos italic_ΞΈ ) β‹… roman_Ξ© italic_ρ ( italic_r , italic_ΞΈ ) ,

whence,

limsβ†’01s⁒(βˆ’gPa⁒t⁒m⁒∫R(1+s⁒H⁒(ΞΈ))⁒Rρ⁒(ΞΎ,ΞΈ)⁒𝑑ξ+1Pa⁒t⁒m⁒∫R⁒cos⁑θ(1+s⁒H⁒(ΞΈ))⁒R((2⁒w⁒(r,ΞΈ)+Ω⁒cos⁑θ)⋅Ω⁒ρ⁒(r,ΞΈ))⁒𝑑y)subscript→𝑠01𝑠𝑔subscriptπ‘ƒπ‘Žπ‘‘π‘šsuperscriptsubscript𝑅1𝑠HπœƒRπœŒπœ‰πœƒdifferential-dπœ‰1subscriptπ‘ƒπ‘Žπ‘‘π‘šsuperscriptsubscriptπ‘…πœƒ1𝑠HπœƒRβ‹…2π‘€π‘ŸπœƒΞ©πœƒΞ©πœŒπ‘Ÿπœƒdifferential-d𝑦\lim_{s\rightarrow 0}\frac{1}{s}\left(-\frac{g}{P_{atm}}\int_{R}^{(1+s\pazocal% {H}(\theta))R}\rho(\xi,\theta)d\xi+\frac{1}{P_{atm}}\int_{R\cos\theta}^{(1+s% \pazocal{H}(\theta))R}((2w(r,\theta)+\Omega\cos\theta)\cdot\Omega\rho(r,\theta% ))dy\right)roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_s end_ARG ( - divide start_ARG italic_g end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + italic_s roman_H ( italic_ΞΈ ) ) roman_R end_POSTSUPERSCRIPT italic_ρ ( italic_ΞΎ , italic_ΞΈ ) italic_d italic_ΞΎ + divide start_ARG 1 end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ∫ start_POSTSUBSCRIPT italic_R roman_cos italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ( 1 + italic_s roman_H ( italic_ΞΈ ) ) roman_R end_POSTSUPERSCRIPT ( ( 2 italic_w ( italic_r , italic_ΞΈ ) + roman_Ξ© roman_cos italic_ΞΈ ) β‹… roman_Ξ© italic_ρ ( italic_r , italic_ΞΈ ) ) italic_d italic_y )
(3.39) =ρ⁒(R,ΞΈ)Pa⁒t⁒m⁒[βˆ’g⁒R+Ω⁒R⁒cos⁑θ⁒(2⁒w⁒(R,ΞΈ)+Ω⁒R⁒cos⁑θ)]⁒H.absentπœŒπ‘…πœƒsubscriptπ‘ƒπ‘Žπ‘‘π‘šdelimited-[]π‘”π‘…Ξ©π‘…πœƒ2π‘€π‘…πœƒΞ©π‘…πœƒH=\frac{\rho(R,\theta)}{P_{atm}}[-gR+\Omega R\cos\theta(2w(R,\theta)+\Omega R% \cos\theta)]\pazocal{H}.= divide start_ARG italic_ρ ( italic_R , italic_ΞΈ ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG [ - italic_g italic_R + roman_Ξ© italic_R roman_cos italic_ΞΈ ( 2 italic_w ( italic_R , italic_ΞΈ ) + roman_Ξ© italic_R roman_cos italic_ΞΈ ) ] roman_H .

Concerning the most problematic term in obtaining the form of derivative of FF\pazocal{F}roman_F, we have

limsβ†’0J⁒(s⁒H)βˆ’J⁒(0)ssubscript→𝑠0𝐽𝑠HJ0𝑠\displaystyle\lim_{s\rightarrow 0}\frac{J(s\pazocal{H})-J(0)}{s}roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG italic_J ( italic_s roman_H ) - roman_J ( 0 ) end_ARG start_ARG italic_s end_ARG =limsβ†’01s⁒((1+s⁒H)2βˆ’((1+s⁒H)2+s2⁒HΞΈ2)32+2⁒s2⁒H2((1+s⁒H)2+s2⁒HΞΈ2)32)absentsubscript→𝑠01𝑠superscript1𝑠H2superscriptsuperscript1sH2superscripts2superscriptsubscriptHπœƒ2322superscripts2superscriptH2superscriptsuperscript1𝑠H2superscripts2superscriptsubscriptHπœƒ232\displaystyle=\lim_{s\rightarrow 0}\frac{1}{s}\left(\frac{(1+s\pazocal{H})^{2}% -((1+s\pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}+2s^{2}% \pazocal{H}^{2}}{((1+s\pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3% }{2}}}\right)= roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_s end_ARG ( divide start_ARG ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT + 2 roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG )
βˆ’(s⁒Hθ⁒θ⁒(1+s⁒H⁒(ΞΈ))2((1+s⁒H⁒(ΞΈ))2+s⁒HΞΈ2)32).𝑠subscriptHπœƒπœƒsuperscript1sHπœƒ2superscriptsuperscript1𝑠Hπœƒ2ssuperscriptsubscriptHπœƒ232\displaystyle\quad-\left(\frac{s\pazocal{H}_{\theta\theta}(1+s\pazocal{H}(% \theta))^{2}}{((1+s\pazocal{H}(\theta))^{2}+s\pazocal{H}_{\theta}^{2})^{\frac{% 3}{2}}}\right).- ( divide start_ARG italic_s roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( 1 + roman_s roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + italic_s roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ) .

One easily sees that

limsβ†’01s⁒(s⁒Hθ⁒θ⁒(1+s⁒H⁒(ΞΈ))2((1+s⁒H⁒(ΞΈ))2+s⁒HΞΈ2)32)=Hθ⁒θ.subscript→𝑠01𝑠𝑠subscriptHπœƒπœƒsuperscript1sHπœƒ2superscriptsuperscript1𝑠Hπœƒ2ssuperscriptsubscriptHπœƒ232subscriptHπœƒπœƒ\lim_{s\rightarrow 0}\frac{1}{s}\left(\frac{s\pazocal{H}_{\theta\theta}(1+s% \pazocal{H}(\theta))^{2}}{((1+s\pazocal{H}(\theta))^{2}+s\pazocal{H}_{\theta}^% {2})^{\frac{3}{2}}}\right)=\pazocal{H}_{\theta\theta}.roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_s end_ARG ( divide start_ARG italic_s roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT ( 1 + roman_s roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + italic_s roman_H ( italic_ΞΈ ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ) = roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT .

Thus,

limsβ†’0J⁒(s⁒H)βˆ’J⁒(0)s=limsβ†’01s⁒((1+s⁒H)2βˆ’((1+s⁒H)2+s2⁒HΞΈ2)32+2⁒s2⁒H2((1+s⁒H)2+s2⁒HΞΈ2)32)βˆ’Hθ⁒θsubscript→𝑠0𝐽𝑠HJ0𝑠subscript→𝑠01𝑠superscript1𝑠H2superscriptsuperscript1sH2superscripts2superscriptsubscriptHπœƒ2322superscripts2superscriptH2superscriptsuperscript1𝑠H2superscripts2superscriptsubscriptHπœƒ232subscriptHπœƒπœƒ\displaystyle\lim_{s\rightarrow 0}\frac{J(s\pazocal{H})-J(0)}{s}=\lim_{s% \rightarrow 0}\frac{1}{s}\left(\frac{(1+s\pazocal{H})^{2}-((1+s\pazocal{H})^{2% }+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}+2s^{2}\pazocal{H}^{2}}{((1+s% \pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}}\right)-\pazocal% {H}_{\theta\theta}roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG italic_J ( italic_s roman_H ) - roman_J ( 0 ) end_ARG start_ARG italic_s end_ARG = roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_s end_ARG ( divide start_ARG ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT + 2 roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG ( ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG ) - roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT
=limsβ†’0(1+s⁒H)2βˆ’((1+s⁒H)2+s2⁒HΞΈ2)32sβˆ’Hθ⁒θabsentsubscript→𝑠0superscript1𝑠H2superscriptsuperscript1sH2superscripts2superscriptsubscriptHπœƒ232𝑠subscriptHπœƒπœƒ\displaystyle=\lim_{s\rightarrow 0}\frac{(1+s\pazocal{H})^{2}-((1+s\pazocal{H}% )^{2}+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}}{s}-\pazocal{H}_{\theta\theta}= roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - ( ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG start_ARG italic_s end_ARG - roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT
=limsβ†’0(1+s⁒H)3βˆ’((1+s⁒H)2+s2⁒HΞΈ2)32βˆ’s⁒H⁒(1+s⁒H)2sβˆ’Hθ⁒θabsentsubscript→𝑠0superscript1𝑠H3superscriptsuperscript1sH2superscripts2superscriptsubscriptHπœƒ232sHsuperscript1sH2𝑠subscriptHπœƒπœƒ\displaystyle=\lim_{s\rightarrow 0}\frac{(1+s\pazocal{H})^{3}-((1+s\pazocal{H}% )^{2}+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}-s\pazocal{H}(1+s\pazocal{H}% )^{2}}{s}-\pazocal{H}_{\theta\theta}= roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - ( ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT - roman_s roman_H ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_s end_ARG - roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT
=limsβ†’0((1+s⁒H)3βˆ’((1+s⁒H)2+s2⁒HΞΈ2)32s)βˆ’limsβ†’0H⁒(1+s⁒H)2βˆ’Hθ⁒θabsentsubscript→𝑠0superscript1𝑠H3superscriptsuperscript1sH2superscripts2superscriptsubscriptHπœƒ232𝑠subscript→𝑠0Hsuperscript1sH2subscriptHπœƒπœƒ\displaystyle=\lim_{s\rightarrow 0}\left(\frac{(1+s\pazocal{H})^{3}-((1+s% \pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2})^{\frac{3}{2}}}{s}\right)-\lim_% {s\rightarrow 0}\pazocal{H}(1+s\pazocal{H})^{2}-\pazocal{H}_{\theta\theta}= roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT ( divide start_ARG ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - ( ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) start_POSTSUPERSCRIPT divide start_ARG 3 end_ARG start_ARG 2 end_ARG end_POSTSUPERSCRIPT end_ARG start_ARG italic_s end_ARG ) - roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT roman_H ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT
=βˆ’Hβˆ’Hθ⁒θ+limsβ†’0(1+s⁒H)βˆ’(1+s⁒H)2+s2⁒HΞΈ2sabsentHsubscriptHπœƒπœƒsubscriptβ†’s01sHsuperscript1sH2superscripts2superscriptsubscriptHπœƒ2s\displaystyle=-\pazocal{H}-\pazocal{H}_{\theta\theta}+\lim_{s\rightarrow 0}% \frac{(1+s\pazocal{H})-\sqrt{(1+s\pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2% }}}{s}= - roman_H - roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT + roman_lim start_POSTSUBSCRIPT roman_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG ( 1 + roman_s roman_H ) - square-root start_ARG ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG roman_s end_ARG
β‹…limsβ†’0((1+sH)2+(1+sH)(1+s⁒H)2+s2⁒HΞΈ2+(1+sH)2+s2HΞΈ2).\displaystyle\quad\cdot\lim_{s\rightarrow 0}\left((1+s\pazocal{H})^{2}+(1+s% \pazocal{H})\sqrt{(1+s\pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2}}+(1+s% \pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2}\right).β‹… roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT ( ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( 1 + roman_s roman_H ) square-root start_ARG ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) .

Since

limsβ†’0(1+s⁒H)βˆ’(1+s⁒H)2+s2⁒HΞΈ2s=0,subscript→𝑠01𝑠Hsuperscript1sH2superscripts2superscriptsubscriptHπœƒ2𝑠0\lim_{s\rightarrow 0}\frac{(1+s\pazocal{H})-\sqrt{(1+s\pazocal{H})^{2}+s^{2}% \pazocal{H}_{\theta}^{2}}}{s}=0,roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG ( 1 + italic_s roman_H ) - square-root start_ARG ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG italic_s end_ARG = 0 ,

and

limsβ†’0((1+s⁒H)2+(1+s⁒H)⁒(1+s⁒H)2+s2⁒HΞΈ2+(1+s⁒H)2+s2⁒HΞΈ2)=3,subscript→𝑠0superscript1𝑠H21sHsuperscript1sH2superscripts2superscriptsubscriptHπœƒ2superscript1sH2superscripts2superscriptsubscriptHπœƒ23\lim_{s\rightarrow 0}\left((1+s\pazocal{H})^{2}+(1+s\pazocal{H})\sqrt{(1+s% \pazocal{H})^{2}+s^{2}\pazocal{H}_{\theta}^{2}}+(1+s\pazocal{H})^{2}+s^{2}% \pazocal{H}_{\theta}^{2}\right)=3,roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT ( ( 1 + italic_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + ( 1 + roman_s roman_H ) square-root start_ARG ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG + ( 1 + roman_s roman_H ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + roman_s start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_H start_POSTSUBSCRIPT italic_ΞΈ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) = 3 ,

we infer

(3.40) limsβ†’0J⁒(s⁒H)βˆ’J⁒(0)s=βˆ’Hβˆ’Hθ⁒θ.subscript→𝑠0𝐽𝑠HJ0𝑠HsubscriptHπœƒπœƒ\lim_{s\rightarrow 0}\frac{J(s\pazocal{H})-J(0)}{s}=-\pazocal{H}-\pazocal{H}_{% \theta\theta}.roman_lim start_POSTSUBSCRIPT italic_s β†’ 0 end_POSTSUBSCRIPT divide start_ARG italic_J ( italic_s roman_H ) - roman_J ( 0 ) end_ARG start_ARG italic_s end_ARG = - roman_H - roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT .

Consequently, relations (3.39) and (3.40) yields

(3.41) D⁒H⁒F⁒(0,P0)⁒(H)=ρ⁒(R,ΞΈ)Pa⁒t⁒m⁒[βˆ’g⁒R+Ω⁒R⁒cos⁑θ⁒(2⁒w⁒(R,ΞΈ)+Ω⁒R⁒cos⁑θ)]β‹…H+ΟƒPa⁒t⁒m⁒(Hθ⁒θ+H).DHF0subscriptP0Hβ‹…πœŒRπœƒsubscriptPatmdelimited-[]gRΞ©Rπœƒ2wRπœƒΞ©RπœƒH𝜎subscriptPatmsubscriptHπœƒπœƒH\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})(\pazocal{H})=\frac{\rho(R,\theta)% }{P_{atm}}\big{[}-gR+\Omega R\cos\theta(2w(R,\theta)+\Omega R\cos\theta)\big{]% }\cdot\pazocal{H}+\frac{\sigma}{P_{atm}}\big{(}\pazocal{H}_{\theta\theta}+% \pazocal{H}\big{)}.roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( roman_H ) = divide start_ARG italic_ρ ( roman_R , italic_ΞΈ ) end_ARG start_ARG roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG [ - roman_g roman_R + roman_Ξ© roman_R roman_cos italic_ΞΈ ( 2 roman_w ( roman_R , italic_ΞΈ ) + roman_Ξ© roman_R roman_cos italic_ΞΈ ) ] β‹… roman_H + divide start_ARG italic_Οƒ end_ARG start_ARG roman_P start_POSTSUBSCRIPT roman_a roman_t roman_m end_POSTSUBSCRIPT end_ARG ( roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT + roman_H ) .

Let us denote

γ⁒(ΞΈ):=ρ⁒(R,ΞΈ)Pa⁒t⁒m⁒(βˆ’g⁒R+Ω⁒R⁒cos⁑θ⁒(2⁒w⁒(R,ΞΈ)+Ω⁒R⁒cos⁑θ))+ΟƒPa⁒t⁒massignπ›ΎπœƒπœŒπ‘…πœƒsubscriptπ‘ƒπ‘Žπ‘‘π‘šπ‘”π‘…Ξ©π‘…πœƒ2π‘€π‘…πœƒΞ©π‘…πœƒπœŽsubscriptπ‘ƒπ‘Žπ‘‘π‘š\gamma(\theta):=\displaystyle\frac{\rho(R,\theta)}{P_{atm}}\left(-gR+\Omega R% \cos\theta(2w(R,\theta)+\Omega R\cos\theta)\right)+\frac{\sigma}{P_{atm}}italic_Ξ³ ( italic_ΞΈ ) := divide start_ARG italic_ρ ( italic_R , italic_ΞΈ ) end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG ( - italic_g italic_R + roman_Ξ© italic_R roman_cos italic_ΞΈ ( 2 italic_w ( italic_R , italic_ΞΈ ) + roman_Ξ© italic_R roman_cos italic_ΞΈ ) ) + divide start_ARG italic_Οƒ end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG

and d:=ΟƒPa⁒t⁒massignπ‘‘πœŽsubscriptπ‘ƒπ‘Žπ‘‘π‘šd:=\displaystyle\frac{\sigma}{P_{atm}}italic_d := divide start_ARG italic_Οƒ end_ARG start_ARG italic_P start_POSTSUBSCRIPT italic_a italic_t italic_m end_POSTSUBSCRIPT end_ARG. Hence, the derivative D⁒H⁒F⁒(0,P0)⁒(H)DHF0subscriptP0H\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})(\pazocal{H})roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( roman_H ) has the representation

(3.42) D⁒H⁒F⁒(0,P0)⁒(H)=d⁒Hθ⁒θ+γ⁒H.DHF0subscriptP0HdsubscriptHπœƒπœƒπ›ΎH\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})(\pazocal{H})=d\pazocal{H}_{\theta% \theta}+\gamma\,\pazocal{H}.roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( roman_H ) = roman_d roman_H start_POSTSUBSCRIPT italic_ΞΈ italic_ΞΈ end_POSTSUBSCRIPT + italic_Ξ³ roman_H .

Now, we are ready to state the main result of this paper.

Theorem 3.1.

Let X𝑋Xitalic_X be the space of continuous functions on [0,Ξ΅]0πœ€[0,\varepsilon][ 0 , italic_Ξ΅ ] having values and derivatives equal to zero at the point 00 , i.e.,

X={u∈C2⁒[0,Ξ΅]:u⁒(0)=0⁒ and β’u′⁒(0)=0}.𝑋conditional-set𝑒superscript𝐢20πœ€π‘’00 and superscript𝑒′00X=\{u\in C^{2}[0,\varepsilon]:u(0)=0\text{ and }u^{\prime}(0)=0\}.italic_X = { italic_u ∈ italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ 0 , italic_Ξ΅ ] : italic_u ( 0 ) = 0 and italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 } .

Then, the operator D⁒H⁒F⁒(0,P0):Xβ†’C⁒[0,Ξ΅]:DHF0subscriptP0β†’XC0πœ€\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0}):X\rightarrow C[0,\varepsilon]roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) : roman_X β†’ roman_C [ 0 , italic_Ξ΅ ] is a linear homeomorphism.

Proof.

The continuity of the operator D⁒H⁒F⁒(0,P0)DHF0subscriptP0\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is straightforward. To complete the proof, we need to establish the bijectivity. This suffices for our purpose since, according to the Bounded Inverse Theorem, any linear, continuous, and bijective operator between two Banach spaces is a homeomorphism (see, e.g., [11, 12]).

To proceed with the proof of the bijectivity, we may use either Theorem 3.4 or Theorem 3.5.

1) Use of Theorem 3.4. To establish the bijectivity of D⁒H⁒F⁒(0,P0)DHF0subscriptP0\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ), it suffices to demonstrate that for any h∈C⁒([0,Ξ΅])β„ŽπΆ0πœ€h\in C([0,\varepsilon])italic_h ∈ italic_C ( [ 0 , italic_Ξ΅ ] ), there exists a unique uh∈Xsubscriptπ‘’β„Žπ‘‹u_{h}\in Xitalic_u start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT ∈ italic_X such that D⁒H⁒F⁒(0,P0)⁒(uh)=hDHF0subscriptP0subscriptuhh\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})(u_{h})=hroman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( roman_u start_POSTSUBSCRIPT roman_h end_POSTSUBSCRIPT ) = roman_h. Note that, this is equivalent with proving that the second order differential equation

(3.43) {u′′⁒(ΞΈ)+γ⁒(ΞΈ)d⁒u⁒(ΞΈ)=φ⁒(ΞΈ)d, on β’[0,Ξ΅]u⁒(0)=0u′⁒(0)=0,casessuperscriptπ‘’β€²β€²πœƒπ›Ύπœƒπ‘‘π‘’πœƒπœ‘πœƒπ‘‘ on 0πœ€otherwise𝑒00otherwisesuperscript𝑒′00otherwise\begin{cases}u^{\prime\prime}(\theta)+\frac{\gamma(\theta)}{d}u(\theta)=\frac{% \varphi(\theta)}{d},\quad\text{ on }[0,\varepsilon]\\ u(0)=0\\ u^{\prime}(0)=0,\end{cases}{ start_ROW start_CELL italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) + divide start_ARG italic_Ξ³ ( italic_ΞΈ ) end_ARG start_ARG italic_d end_ARG italic_u ( italic_ΞΈ ) = divide start_ARG italic_Ο† ( italic_ΞΈ ) end_ARG start_ARG italic_d end_ARG , on [ 0 , italic_Ξ΅ ] end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_u ( 0 ) = 0 end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0 , end_CELL start_CELL end_CELL end_ROW

has a unique solution. Following the conventional approach often employed in the literature for second-order ordinary differential equations, we can represent (3.43) as a system of first order differential equations

(3.44) {Yβ€²+A⁒Y=BΟ†, on β’[0,Ξ΅],Y⁒(0)=O2,casessuperscriptπ‘Œβ€²π΄π‘Œsubscriptπ΅πœ‘ on 0πœ€otherwiseπ‘Œ0subscript𝑂2otherwise\begin{cases}Y^{\prime}+AY=B_{\varphi},\text{ on }[0,\varepsilon],\\ Y(0)=O_{2},\end{cases}{ start_ROW start_CELL italic_Y start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + italic_A italic_Y = italic_B start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT , on [ 0 , italic_Ξ΅ ] , end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_Y ( 0 ) = italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , end_CELL start_CELL end_CELL end_ROW

where O2subscript𝑂2O_{2}italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is the zero vector from ℝ2superscriptℝ2\mathbb{R}^{2}blackboard_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT,

Y=[uβ€²u],A=[βˆ’100Ξ³d]⁒ and β’BΟ†=[0Ο†d].formulae-sequenceπ‘Œmatrixsuperscript𝑒′𝑒𝐴matrix100𝛾𝑑 and subscriptπ΅πœ‘matrix0πœ‘π‘‘Y=\begin{bmatrix}u^{\prime}\\ u\end{bmatrix},A=\begin{bmatrix}-\par\par\par\par\par\par 1&0\\ 0&\frac{\gamma}{d}\end{bmatrix}\text{ and }B_{\varphi}=\begin{bmatrix}0\\ \frac{\varphi}{d}\end{bmatrix}.italic_Y = [ start_ARG start_ROW start_CELL italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_CELL end_ROW start_ROW start_CELL italic_u end_CELL end_ROW end_ARG ] , italic_A = [ start_ARG start_ROW start_CELL - 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL divide start_ARG italic_Ξ³ end_ARG start_ARG italic_d end_ARG end_CELL end_ROW end_ARG ] and italic_B start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT = [ start_ARG start_ROW start_CELL 0 end_CELL end_ROW start_ROW start_CELL divide start_ARG italic_Ο† end_ARG start_ARG italic_d end_ARG end_CELL end_ROW end_ARG ] .

Since A𝐴Aitalic_A and Bhsubscriptπ΅β„ŽB_{h}italic_B start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT are continuous functions, from Theorem 3.4, there exists a unique solution

Y⁒(t)=∫0te∫stA⁒(ΞΎ)⁒𝑑ξ⁒Bφ⁒(s)⁒𝑑s,π‘Œπ‘‘superscriptsubscript0𝑑superscript𝑒superscriptsubscriptπ‘ π‘‘π΄πœ‰differential-dπœ‰subscriptπ΅πœ‘π‘ differential-d𝑠Y(t)=\int_{0}^{t}e^{\int_{s}^{t}A(\xi)d\xi}B_{\varphi}(s)ds,italic_Y ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_A ( italic_ΞΎ ) italic_d italic_ΞΎ end_POSTSUPERSCRIPT italic_B start_POSTSUBSCRIPT italic_Ο† end_POSTSUBSCRIPT ( italic_s ) italic_d italic_s ,

to the problem (3.44), as desired.

2) Use of Theorem 3.5. We prove that D⁒H⁒F⁒(0,P0)DHF0subscriptP0\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) is both injective and surjective.

Check of the injectivity: Let u𝑒uitalic_u be an element from X such that

D⁒H⁒F⁒(0,P0)⁒(u)=0,DHF0subscriptP0u0\pazocal{D}{H}\pazocal{F}(0,\pazocal{P}_{0})(u)=0,roman_D roman_H roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( roman_u ) = 0 ,

and let Ξ¦1,Ξ¦2subscriptΞ¦1subscriptΞ¦2\varPhi_{1},\varPhi_{2}roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be a basis of solutions for the second order differential equation (3.42). Thus, we may write u=c1⁒Φ1+c2⁒Φ2𝑒subscript𝑐1subscriptΞ¦1subscript𝑐2subscriptΞ¦2u=c_{1}\varPhi_{1}+c_{2}\varPhi_{2}italic_u = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, for some c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT real numbers. Since we are looking for solutions with u⁒(0)=u′⁒(0)=0𝑒0superscript𝑒′00u(0)=u^{\prime}(0)=0italic_u ( 0 ) = italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0, the the linear independence of Ξ¦1subscriptΞ¦1\varPhi_{1}roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ξ¦2subscriptΞ¦2\varPhi_{2}roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT implies c1=c2=0subscript𝑐1subscript𝑐20c_{1}=c_{2}=0italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0, hence u≑0𝑒0u\equiv 0italic_u ≑ 0.

Check of the surjectivity: Let g∈C⁒[0,Ξ΅]𝑔𝐢0πœ€g\in C[0,\varepsilon]italic_g ∈ italic_C [ 0 , italic_Ξ΅ ]. Following Theorem 3.5, there exists u~~𝑒\widetilde{u}over~ start_ARG italic_u end_ARG from C2⁒[0,Ξ΅]superscript𝐢20πœ€C^{2}[0,\varepsilon]italic_C start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ 0 , italic_Ξ΅ ] such that

(3.45) DH⁒F⁒(0,P0)⁒(u~)=g,subscriptDHF0subscriptP0~ug\pazocal{D}_{\pazocal{H}}\pazocal{F}(0,\pazocal{P}_{0})(\widetilde{u})=g,roman_D start_POSTSUBSCRIPT roman_H end_POSTSUBSCRIPT roman_F ( 0 , roman_P start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ( over~ start_ARG roman_u end_ARG ) = roman_g ,

with the form u~=up+c1⁒Φ1+c2⁒Φ2~𝑒subscript𝑒𝑝subscript𝑐1subscriptΞ¦1subscript𝑐2subscriptΞ¦2\widetilde{u}=u_{p}+c_{1}\varPhi_{1}+c_{2}\varPhi_{2}over~ start_ARG italic_u end_ARG = italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, where

up⁒(ΞΈ)=∫0ΞΈg⁒(s)⁒(Ξ¦1⁒(ΞΈ)⁒W1⁒(s)+Ξ¦2⁒(ΞΈ)⁒W2⁒(s))W⁒(Ξ¦1,Ξ¦2)⁒(s)⁒𝑑s.subscriptπ‘’π‘πœƒsuperscriptsubscript0πœƒπ‘”π‘ subscriptΞ¦1πœƒsubscriptπ‘Š1𝑠subscriptΞ¦2πœƒsubscriptπ‘Š2π‘ π‘ŠsubscriptΞ¦1subscriptΞ¦2𝑠differential-d𝑠u_{p}(\theta)=\int_{0}^{\theta}\frac{g(s)\left(\varPhi_{1}(\theta)W_{1}(s)+% \varPhi_{2}(\theta)W_{2}(s)\right)}{W(\varPhi_{1},\varPhi_{2})(s)}ds.italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_ΞΈ ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT divide start_ARG italic_g ( italic_s ) ( roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ΞΈ ) italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_s ) + roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ΞΈ ) italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_s ) ) end_ARG start_ARG italic_W ( roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_s ) end_ARG italic_d italic_s .

To find the constants c1,c2subscript𝑐1subscript𝑐2c_{1},c_{2}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, we impose u⁒(0)=u′⁒(0)=0𝑒0superscript𝑒′00u(0)=u^{\prime}(0)=0italic_u ( 0 ) = italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = 0. Thus,

0=c1⁒Φ1⁒(0)+c2⁒Φ2⁒(0)0subscript𝑐1subscriptΞ¦10subscript𝑐2subscriptΞ¦200=c_{1}\varPhi_{1}(0)+c_{2}\varPhi_{2}(0)0 = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( 0 ) + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( 0 )

and, by taking heed of the fact that W1⁒(ΞΈ)=βˆ’Ξ¦2⁒(ΞΈ)subscriptπ‘Š1πœƒsubscriptΞ¦2πœƒW_{1}(\theta)=-\varPhi_{2}(\theta)italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ΞΈ ) = - roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ΞΈ ) and W2⁒(ΞΈ)=Ξ¦1⁒(ΞΈ)subscriptπ‘Š2πœƒsubscriptΞ¦1πœƒW_{2}(\theta)=\varPhi_{1}(\theta)italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_ΞΈ ) = roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ΞΈ ), for all θ∈[0,Ξ΅]πœƒ0πœ€\theta\in[0,\varepsilon]italic_ΞΈ ∈ [ 0 , italic_Ξ΅ ],

0=u′⁒(0)=c1⁒Φ1′⁒(0)+c2⁒Φ2′⁒(0).0superscript𝑒′0subscript𝑐1superscriptsubscriptΞ¦1β€²0subscript𝑐2superscriptsubscriptΞ¦2β€²00=u^{\prime}(0)=c_{1}\varPhi_{1}^{\prime}(0)+c_{2}\varPhi_{2}^{\prime}(0).0 = italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) + italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( 0 ) .

Due to the linear independence of Ξ¦1subscriptΞ¦1\varPhi_{1}roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ξ¦2subscriptΞ¦2\varPhi_{2}roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, we obtain, again, that c1=c2=0subscript𝑐1subscript𝑐20c_{1}=c_{2}=0italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0. Thus, the unique solution of (⁒3.45⁒)italic-(3.45italic-)\eqref{eq:452}italic_( italic_) will be

(3.46) u⁒(ΞΈ)=up⁒(ΞΈ).π‘’πœƒsubscriptπ‘’π‘πœƒu(\theta)=u_{p}(\theta).italic_u ( italic_ΞΈ ) = italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT ( italic_ΞΈ ) .

Since Ξ¦1⁒W1+Ξ¦2⁒W2=0subscriptΞ¦1subscriptπ‘Š1subscriptΞ¦2subscriptπ‘Š20\varPhi_{1}W_{1}+\varPhi_{2}W_{2}=0roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_W start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_W start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = 0, we find that

u′⁒(ΞΈ)=βˆ‘k=12Ξ¦k′⁒(ΞΈ)⁒∫0ΞΈWk⁒(s)⁒g⁒(s)W⁒(Ξ¦1,Ξ¦2)⁒(s)⁒𝑑s,superscriptπ‘’β€²πœƒsuperscriptsubscriptπ‘˜12superscriptsubscriptΞ¦π‘˜β€²πœƒsuperscriptsubscript0πœƒsubscriptπ‘Šπ‘˜π‘ π‘”π‘ π‘ŠsubscriptΞ¦1subscriptΞ¦2𝑠differential-d𝑠u^{\prime}(\theta)=\sum_{k=1}^{2}\varPhi_{k}^{\prime}(\theta)\int_{0}^{\theta}% \frac{W_{k}(s)g(s)}{W(\varPhi_{1},\varPhi_{2})(s)}ds,italic_u start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) = βˆ‘ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT roman_Ξ¦ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT divide start_ARG italic_W start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_s ) italic_g ( italic_s ) end_ARG start_ARG italic_W ( roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_s ) end_ARG italic_d italic_s ,

and

(3.47) u′′⁒(ΞΈ)=βˆ‘k=12(Ξ¦k′′⁒(ΞΈ)⁒∫0ΞΈWk⁒(s)⁒g⁒(s)W⁒(Ξ¦1,Ξ¦2)⁒(s)⁒𝑑s+Ξ¦k′⁒(ΞΈ)⁒Wk⁒(ΞΈ)⁒g⁒(ΞΈ)W⁒(Ξ¦1,Ξ¦2)⁒(ΞΈ)),superscriptπ‘’β€²β€²πœƒsuperscriptsubscriptπ‘˜12superscriptsubscriptΞ¦π‘˜β€²β€²πœƒsuperscriptsubscript0πœƒsubscriptπ‘Šπ‘˜π‘ π‘”π‘ π‘ŠsubscriptΞ¦1subscriptΞ¦2𝑠differential-d𝑠superscriptsubscriptΞ¦π‘˜β€²πœƒsubscriptπ‘Šπ‘˜πœƒπ‘”πœƒπ‘ŠsubscriptΞ¦1subscriptΞ¦2πœƒu^{\prime\prime}(\theta)=\sum_{k=1}^{2}\left(\varPhi_{k}^{\prime\prime}(\theta% )\int_{0}^{\theta}\frac{W_{k}(s)g(s)}{W(\varPhi_{1},\varPhi_{2})(s)}ds+\frac{% \varPhi_{k}^{\prime}(\theta)W_{k}(\theta)g(\theta)}{W(\varPhi_{1},\varPhi_{2})% (\theta)}\right),italic_u start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) = βˆ‘ start_POSTSUBSCRIPT italic_k = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( roman_Ξ¦ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_ΞΈ end_POSTSUPERSCRIPT divide start_ARG italic_W start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_s ) italic_g ( italic_s ) end_ARG start_ARG italic_W ( roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_s ) end_ARG italic_d italic_s + divide start_ARG roman_Ξ¦ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_ΞΈ ) italic_W start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_ΞΈ ) italic_g ( italic_ΞΈ ) end_ARG start_ARG italic_W ( roman_Ξ¦ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , roman_Ξ¦ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ( italic_ΞΈ ) end_ARG ) ,

for all θ∈[0,Ξ΅].πœƒ0πœ€\theta\in[0,\varepsilon].italic_ΞΈ ∈ [ 0 , italic_Ξ΅ ] . With this conclusion, we finish our proof.

∎

As a consequence of Theorem 3.1, we obtain the following existence result.

Theorem 3.2.

For small enough variations of PP\pazocal{P}roman_P, there exists H∈XHX\pazocal{H}\in Xroman_H ∈ roman_X such that (3.35) holds true.

Proof.

The conclusion follows immediately from Theorem 3.3 and Theorem 3.1. ∎

Appendix

This section presents well-known results from the literature used throughout this paper. The primary result (Theorem 3.2) relies on the Implicit Function Theorem (see, e.g., [9]).

Theorem 3.3.

Let X,Y,Zπ‘‹π‘Œπ‘X,Y,Zitalic_X , italic_Y , italic_Z be Banach spaces, UβŠ‚XΓ—Yπ‘ˆπ‘‹π‘ŒU\subset X\times Yitalic_U βŠ‚ italic_X Γ— italic_Y an open neighbourhood of a point (x0,y0)∈XΓ—Ysubscriptπ‘₯0subscript𝑦0π‘‹π‘Œ(x_{0},y_{0})\in X\times Y( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) ∈ italic_X Γ— italic_Y and let f:Uβ†’Z:π‘“β†’π‘ˆπ‘f\colon U\to Zitalic_f : italic_U β†’ italic_Z be a continuous functions. Assume that:

  • i)

    The function f𝑓fitalic_f satisfies f⁒(x0,y0)=0𝑓subscriptπ‘₯0subscript𝑦00f(x_{0},y_{0})=0italic_f ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = 0.

  • ii)

    The partial derivative fy⁒(x0,y0)subscript𝑓𝑦subscriptπ‘₯0subscript𝑦0f_{y}(x_{0},y_{0})italic_f start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) exists and is an linear homeomorphism from Yπ‘ŒYitalic_Y to Z𝑍Zitalic_Z.

Then, there exists an open neighbourhood U1subscriptπ‘ˆ1U_{1}italic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT of x0subscriptπ‘₯0x_{0}italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and a unique g:U1β†’Y:𝑔→subscriptπ‘ˆ1π‘Œg\colon U_{1}\to Yitalic_g : italic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_Y continuous function such that g⁒(x0)=y0𝑔subscriptπ‘₯0subscript𝑦0g(x_{0})=y_{0}italic_g ( italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) = italic_y start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and f⁒(x,g⁒(x))=0𝑓π‘₯𝑔π‘₯0f(x,g(x))=0italic_f ( italic_x , italic_g ( italic_x ) ) = 0 on U1subscriptπ‘ˆ1U_{1}italic_U start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

Next, we focus on some existence and uniqueness results for a differential equation. Let us consider the Cauchy problem

(3.48) {Xβ€²=A⁒(t)⁒X⁒(t)+B⁒(t)X⁒(0)=On⁒ on β’[0,T],casessuperscript𝑋′𝐴𝑑𝑋𝑑𝐡𝑑otherwise𝑋0subscript𝑂𝑛otherwise on 0𝑇\begin{cases}X^{\prime}=A(t)X(t)+B(t)\\ X(0)=O_{n}\end{cases}\text{~{}on~{}}[0,T],{ start_ROW start_CELL italic_X start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_A ( italic_t ) italic_X ( italic_t ) + italic_B ( italic_t ) end_CELL start_CELL end_CELL end_ROW start_ROW start_CELL italic_X ( 0 ) = italic_O start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_CELL start_CELL end_CELL end_ROW on [ 0 , italic_T ] ,

where

X:ℝ→ℝn,A,Bβˆˆβ„³nΓ—n⁒(C⁒[0,T]):𝑋formulae-sequence→ℝsuperscriptℝ𝑛𝐴𝐡subscriptℳ𝑛𝑛𝐢0𝑇X\colon\mathbb{R}\to\mathbb{R}^{n},A,B\in\mathcal{M}_{n\times n}(C[0,T])italic_X : blackboard_R β†’ blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT , italic_A , italic_B ∈ caligraphic_M start_POSTSUBSCRIPT italic_n Γ— italic_n end_POSTSUBSCRIPT ( italic_C [ 0 , italic_T ] )

are unknowns, and Onsubscript𝑂𝑛O_{n}italic_O start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is the zero vector from ℝnsuperscriptℝ𝑛\mathbb{R}^{n}blackboard_R start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. These equations have been extensively studied, and their behavior is well-established. The following result is a classic in the theory of differential equations and refers to the exponential-like representation of solutions for the system (3.48). We send to [6, 4, 8] for further details.

Theorem 3.4.

If the matrix A⁒(t)𝐴𝑑A(t)italic_A ( italic_t ) commute with ∫0tA⁒(s)⁒𝑑ssuperscriptsubscript0𝑑𝐴𝑠differential-d𝑠\int_{0}^{t}A(s)ds∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_A ( italic_s ) italic_d italic_s, i.e.,

A⁒(t)⁒∫0tA⁒(s)⁒𝑑s=∫0tA⁒(s)⁒𝑑s⁒A⁒(t), for all β’t∈[0,T],formulae-sequence𝐴𝑑superscriptsubscript0𝑑𝐴𝑠differential-d𝑠superscriptsubscript0𝑑𝐴𝑠differential-d𝑠𝐴𝑑 for all π‘‘0𝑇A(t)\int_{0}^{t}A(s)ds=\int_{0}^{t}A(s)dsA(t),\text{ for all }t\in[0,T],italic_A ( italic_t ) ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_A ( italic_s ) italic_d italic_s = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_A ( italic_s ) italic_d italic_s italic_A ( italic_t ) , for all italic_t ∈ [ 0 , italic_T ] ,

then the system (3.48) has one C1superscript𝐢1C^{1}italic_C start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT solution and

Φ⁒(t):=∫0tA⁒(s)⁒𝑑s,assignΦ𝑑superscriptsubscript0𝑑𝐴𝑠differential-d𝑠\Phi(t):=\int_{0}^{t}A(s)ds,roman_Ξ¦ ( italic_t ) := ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_A ( italic_s ) italic_d italic_s ,

is a fundamental matrix,  for all β’t∈[0,T] for all π‘‘0𝑇\text{ for all }t\in[0,T]for all italic_t ∈ [ 0 , italic_T ]. Moreover, the solution is given by

X⁒(t)=∫0te∫stA⁒(ΞΎ)⁒𝑑ξ⁒B⁒(s)⁒𝑑s, for all β’t∈[0,T].formulae-sequence𝑋𝑑superscriptsubscript0𝑑superscript𝑒superscriptsubscriptπ‘ π‘‘π΄πœ‰differential-dπœ‰π΅π‘ differential-d𝑠 for all π‘‘0𝑇X(t)=\int_{0}^{t}e^{\int_{s}^{t}A(\xi)d\xi}B(s)ds,\text{ for all }t\in[0,T].italic_X ( italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_A ( italic_ΞΎ ) italic_d italic_ΞΎ end_POSTSUPERSCRIPT italic_B ( italic_s ) italic_d italic_s , for all italic_t ∈ [ 0 , italic_T ] .

A similar existence result is concerned with the representation of the solution for a general linear differential equation of arbitrarily order p>0𝑝0p>0italic_p > 0 on some interval I𝐼Iitalic_I. We consider the linear differential operator

L⁒(u)⁒(x)=βˆ‘i=0pai⁒(x)⁒u(i)⁒(x),x∈I,formulae-sequence𝐿𝑒π‘₯superscriptsubscript𝑖0𝑝subscriptπ‘Žπ‘–π‘₯superscript𝑒𝑖π‘₯π‘₯𝐼L(u)(x)=\sum_{i=0}^{p}a_{i}(x)u^{(i)}(x),\quad x\in I,italic_L ( italic_u ) ( italic_x ) = βˆ‘ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_x ) italic_u start_POSTSUPERSCRIPT ( italic_i ) end_POSTSUPERSCRIPT ( italic_x ) , italic_x ∈ italic_I ,

where aisubscriptπ‘Žπ‘–a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT are continuous functions on I𝐼Iitalic_I, and u𝑒uitalic_u of Cp⁒(I)superscript𝐢𝑝𝐼C^{p}(I)italic_C start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT ( italic_I ) class.

Theorem 3.5 ([10, Chapter 3, Th. 11]).

Let b𝑏bitalic_b be a continuous function on I𝐼Iitalic_I. Then, every solution of the equation L⁒u=b𝐿𝑒𝑏Lu=bitalic_L italic_u = italic_b can be written as

u=up+βˆ‘i=0pci⁒ϕi,𝑒subscript𝑒𝑝superscriptsubscript𝑖0𝑝subscript𝑐𝑖subscriptitalic-ϕ𝑖u=u_{p}+\sum_{i=0}^{p}c_{i}\phi_{i},italic_u = italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT + βˆ‘ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_Ο• start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ,

where {Ο•i}0≀i≀psubscriptsubscriptitalic-ϕ𝑖0𝑖𝑝\{\phi_{i}\}_{0\leq i\leq p}{ italic_Ο• start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT 0 ≀ italic_i ≀ italic_p end_POSTSUBSCRIPT is a basis for the solutions of L⁒u=0𝐿𝑒0Lu=0italic_L italic_u = 0 and upsubscript𝑒𝑝u_{p}italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT is a particular solution of L⁒u=b𝐿𝑒𝑏Lu=bitalic_L italic_u = italic_b. Additionally, we may look for upsubscript𝑒𝑝u_{p}italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT in the form

up=βˆ‘i=0pΟ•i⁒∫x0xWk⁒(t)⁒b⁒(t)W⁒(t),subscript𝑒𝑝superscriptsubscript𝑖0𝑝subscriptitalic-ϕ𝑖superscriptsubscriptsubscriptπ‘₯0π‘₯subscriptπ‘Šπ‘˜π‘‘π‘π‘‘π‘Šπ‘‘u_{p}=\sum_{i=0}^{p}\phi_{i}\int_{x_{0}}^{x}\frac{W_{k}(t)b(t)}{W(t)},italic_u start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT = βˆ‘ start_POSTSUBSCRIPT italic_i = 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT italic_Ο• start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT italic_x start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT divide start_ARG italic_W start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ( italic_t ) italic_b ( italic_t ) end_ARG start_ARG italic_W ( italic_t ) end_ARG ,

where Wπ‘ŠWitalic_W is the Wronskian of the basis {Ο•i}0≀i≀psubscriptsubscriptitalic-ϕ𝑖0𝑖𝑝\{\phi_{i}\}_{0\leq i\leq p}{ italic_Ο• start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT } start_POSTSUBSCRIPT 0 ≀ italic_i ≀ italic_p end_POSTSUBSCRIPT, and Wksubscriptπ‘Šπ‘˜W_{k}italic_W start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT is the Wronskian obtained by replacing the kπ‘˜kitalic_kth column of Wπ‘ŠWitalic_W with (0,…,0,1)0…01(0,\ldots,0,1)( 0 , … , 0 , 1 ).

References

  • [1] A. Constantin, Nonlinear Water Waves with Applications to Wave-Current Interractions and Tsunamis, Philadelphia, 2011.
  • [2] D. Henry and C. I. Martin, β€œStratified equatorial flows in cylindrical coordinates,” Nonlinearity, vol. 33, no. 8, p. 3889, 2020.
  • [3] H.-C. Hsu and C. I. Martin, β€œFree-surface capillary-gravity azimuthal equatorial flows,” Nonlinear Anal., vol. 144, pp. 1–9, 2016.
  • [4] J. F. P. Martin, β€œOn the Exponential Representation of Solutions of Linear Differential Equations,” J. Differential Equations, vol. 4, pp. 257–279, 1968.
  • [5] F. G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications.
  • [6] W. Magnus, β€œOn the exponential solution of differential equations for a linear operator,” Commun. Pure Appl. Math., vol. 7, pp. 649–673, 1954.
  • [7] M. V. Safonov and Y. Yuan, β€œDoubling Properties for Second Order Parabolic Equations,” Ann. Math., vol. 150, no. 1, pp. 313–327, 1999.
  • [8] R. Precup, Ordinary Differential Equations: Example-driven, Including Maple Code, Berlin, Boston: De Gruyter, 2018.
  • [9] M. S. Berger, Nonlinearity and Functional Analysis, New York: Academic Press, 1977.
  • [10] E. A. Coddington, An Introduction to Ordinary Differential Equations, New York: Dover, 1961.
  • [11] H. L. Royden and P. Fitzpatrick, Real Analysis, Boston: Prentice Hall, 2010.
  • [12] G. KΓΆthe, Topological Vector Spaces I, 2nd ed., Berlin: Springer, 1983.
  • [13] A. Constantin, β€œOn the modelling of equatorial waves,” Geophys. Res. Lett., vol. 39, no. 5, p. L05602, 2012.
  • [14] A. Constantin, β€œAn exact solution for equatorially trapped waves,” J. Geophys. Res.: Oceans, vol. 117, p. C05029, 2012.
  • [15] A. Constantin, β€œSome three-dimensional nonlinear equatorial flows,” J. Phys. Oceanogr., vol. 43, no. 1, pp. 165–175, 2013.
  • [16] W. S. Kessler and M. J. McPhaden, β€œOceanic Equatorial Waves and the 1991–93 El NiΓ±o,” J. Climate, vol. 8, no. 7, pp. 1757–1774, 1995.
  • [17] T. S. Garrison, Essentials of Oceanography, Belmont, CA: Cengage Learning, Brooks/Cole, 2009.
  • [18] J. P. McCreary, β€œModeling Equatorial Ocean Circulation,” Annu. Rev. Fluid Mech., vol. 17, pp. 359–409, 1985.
  • [19] G. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge: Cambridge University Press, 2017.
  • [20] A. Constantin and R. S. Johnson, β€œAn exact, steady, purely azimuthal equatorial flow with a free surface,” J. Phys. Oceanogr., vol. 46, no. 6, pp. 1935–1945, 2016.
  • [21] A. V. Feodorov and J. N. Brown, β€œEquatorial waves,” in Enciclopedia of Ocean Sciences, J. Steele, Ed., New York: Academic Press, 2009, pp. 3679–3695.
  • [22] T. Izumo, β€œThe equatorial current, meridional overturning circulation, and their roles in mass and heat exchanges during the El NiΓ±o events in the tropical Pacific Ocean,” Ocean Dyn., vol. 55, no. 2, pp. 110–123, 2005.
  • [23] G. C. Johnson, M. J. McPhaden, and E. Firing, β€œEquatorial Pacific ocean horizontal velocity, divergence and upwelling,” J. Phys. Oceanogr., vol. 31, no. 3, pp. 839–849, 2001.
  • [24] A. Constantin, β€œSome nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves,” J. Phys. Oceanogr., vol. 44, no. 2, pp. 781–789, 2014.
  • [25] A. Constantin and R. S. Johnson, β€œThe dynamics of waves interacting with the Equatorial Undercurrent,” Geophys. Astrophys. Fluid Dyn., vol. 109, no. 4, pp. 311–358, 2015.
  • [26] A. Constantin and R. S. Johnson, β€œAn exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current,” J. Phys. Oceanogr., vol. 46, no. 12, pp. 3585–3594, 2016.
  • [27] A. Constantin and R. S. Johnson, β€œA nonlinear, three-dimensional model for ocean flows, motivated by some observations in the Pacific Equatorial Undercurrent and thermocline,” Phys. Fluids, vol. 29, no. 5, p. 056604, 2017.
  • [28] A.-V. Matioc, β€œAn exact solution for geophysical equatorial edge waves over a sloping beach,” J. Phys. A: Math. Theor., vol. 45, no. 36, p. 365501, 2012.
  • [29] D. Henry and C. I. Martin, β€œFree-surface, purely azimuthal equatorial flows in spherical coordinates with stratification,” J. Differential Equations, vol. 266, no. 10, pp. 6788–6808, 2019.
  • [30] D. Henry and C. I. Martin, β€œExact, free-surface equatorial flows with general stratification in spherical coordinates,” Arch. Ration. Mech. Anal., vol. 233, pp. 497–512, 2019.
  • [31] H.-C. Hsu, β€œAn exact solution for equatorial waves,” Monatsh. Math., vol. 176, pp. 143–152, 2015.
  • [32] D. Ionescu-Kruse, β€œAn exact solution for geophysical edge waves in the f-plane approximation,” Nonlinear Anal. Real World Appl., vol. 24, pp. 190–195, 2015.
  • [33] B. Basu, β€œOn an exact solution of a nonlinear three-dimensional model in ocean flows with Equatorial Undercurrent and linear variation in density,” Discrete Contin. Dyn. Syst. Ser. A, vol. 39, no. 8, pp. 4783–4796, 2019.
2024

Related Posts