[1] Ortega, J. M., and Rheinboldt, W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, NY, 1970. 484 JOTA: VOL. 113, NO. 3, JUNE 2002
[2] Potra, F. A., On Q-Order and R-Order of Convergence, Journal of Optimization Theory and Applications, Vol. 63, pp. 415–431, 1989.
[3] Rheinboldt, W. C., Methods for Solûing Systems of Nonlinear Equations, SIAM, Philadelphia, Pennsylvania, 1998.
[4] Potra, F. A., Q-Superlinear Convergence of the Iterates in Primal–Dual InteriorPoint Methods, Mathematical Programming (to appear).
[5] Ostrowski, A. M., Solution of Equations and Systems of Equations, Academic Press, New York, NY, 1966.
[6] Householder, A. S., The Theory of Matrices in Numerical Analysis, Dover, New York, NY, 1974.
[7] Argyros, I., and Szidarovszky, F., The Theory and Applications of Iteration Methods, CRC Press, Boca Raton, Florida, 1993.
[8] Argyros, I., On the Convergence of the Modified Contractions, Journal of Computational and Applied Mathematics, Vol. 55, pp. 183–189, 1994.
[9] Brown, P. N., A Local Convergence Theory for Combined Inexact-Newton Finite-Difference Projection Methods, SIAM Journal on Numerical Analysis, Vol. 24, pp. 407–434, 1987.
[10] Brown, P. N., and Saad, Y., Convergence Theory of Nonlinear Newton–Krylov Algorithms, SIAM Journal on Optimization, Vol. 4, pp. 297–330, 1994.
[11] Catinas, E., Newton and Newton–Krylov Methods for Solving Nonlinear Systems in n , PhD Thesis, Babes–Bolyai University of Cluj–Napoca, Cluj– Napoca, Romania, 1999.
[12] Catinas, E., On the High Convergence Orders of the Newton–GMBACK Methods, Revue d’Analyse Numerique et de Theorie de l’Approximation, Vol. 28, pp. 125–132, 1999.
[13] Catinas, E., A Note on the Quadratic Convergence of the Inexact Newton Methods, Revue d’Analyse Numerique et de Theorie de l’Approximation, Vol. 29, pp. 129–134, 2000.
[14] Catinas, E., Inexact Perturbed Newton Methods and Applications to a Class of Krylov Solvers, Journal of Optimization Theory and Applications, Vol. 108, pp. 543–570, 2001.
[15] Catinas, E., The Inexact, Inexact Perturbed, and Quasi-Newton Methods are Equivalent Models, Mathematics of Computation (to appear).
[16] Dembo, R. S., Eisenstat, S. C., and Steihaug, T., Inexact Newton Methods, SIAM Journal on Numerical Analysis, Vol. 19, pp. 400–408, 1982.
[17] DENNIS, J. E., JR., and MORE´ , J. J., A Characterization of Superlinear Convergence and Its Application to Quasi-Newton Methods, Mathematics of Computation, Vol. 28, pp. 549–560, 1974.
[18] Dennis, J. E., JR., and More , J. J., Quasi-Newton Methods, Motivation and Theory, SIAM Review, Vol. 19, pp. 46–89, 1977.
[19] Dennis, J. E., JR., and Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Series in Computational Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey, 1983.
[20] Deuflhard, P., and Potra, F. A., Asymptotic Mesh Independence of Newton– Galerkin Methods via a Refined Mysovskii Theorem, SIAM Journal on Numerical Analysis, Vol. 29, pp. 1395–1412, 1992.