Abstract

The paper aims at approximating functions through a sequence of linear positive operators of continuous type. First we define the Appell polynomials of dimension \(d(d\geq2)\) and with their aid we expand the Sz\'{a}sz-Mirakjan operators in the Durrmeyer sense. The investigation of the new class of operators involves the study of convergence by using the universal Bohman-Korovkin theorem and the indication of the error by using modulus of smoothness. The main results are given by the asymptotic expansion of both the operators and their derivatives with the explicit specification of all coefficients in a concise form. In particular, Voronovskaja type theorems are obtained.

Authors

Ulrich Abel
Technische Hochschule Mittelhessen, Wilhelm-Leuschner-Straße 13, 61169 Friedberg, Germany

Octavian Agratini
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Radu Paltanea
Department of Mathematics, Transilvania University, Brasov, Romania

Keywords

Positive linear operator; Appell polynomial; Asymptotic expansion; Rate of convergence; Modulus of continuity.

Paper coordinates

U. Abel, O. Agratini, R. Păltănea, Szász–Mirakjan–Durrmeyer operators defined by multiple Appell polynomials, Positivity, 29 (2025), art. no. 17, https://doi.org/10.1007/s11117-024-01108-6

PDF

About this paper

Journal

Positivity

Publisher Name

Springer Nature Link

Print ISSN

1385-1292

Online ISSN
1572-9281

 

google scholar link

[1] Abel, U., Agratini, O., Ivan,M., Asymptotic properties of Kantorovich-type Szász-Mirakjan operators of higher order. Math. Found. Comput. 6(3), 290–302 (2023)
[2] Abel, U., Agratini, O., Paltanea, R (2018) A complete asymptotic expansion for the quasi-interpolants of Gauß-Weiertraß operators. Mediterr. J. Math. 15, 156 (2018)
[3] Agrawal, P.N., Singh, S., Stancu variant of Jakimovski-Leviatan-Durrmeyer operators involvingBrenke type polynomials. Math. Found. Comput. 7(1), 1–19 (2024)
[4] Altomare, F., Campiti, M., Korovkin-type Approximation Theory and its Applications, Walter de Gruyter Studies in Mathematics, vol. 17. de Gruyter & Co., Berlin (1994)
[5] Altomare, F., Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 5, 92–164 (2010)
[6] Ansari, K.J., Mursaleen, M., Rahman, S., Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials. RACSAM 113, 1007–1024 (2019)
[7] Appell, P.E., Ann. Sci. École Norm. Sup., 3e Série. Sur une classe de polynômes 9, 119–144 (1880)
[8] Braha, N.L., Kadak, U., Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method. Math. Methods Appl. Sci. 43(5), 2337–2356 (2020)
[9] Gupta, P., Acu, A.M., Agrawal, P.N., Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials. Georgian Math. J. 28(1), 73–82 (2021)
[10] Gupta, P., Agrawal, P.N., Quantitative Voronovskaja and Grüss Voronovskaja-Type Theorems for Operators of Kantorovich Type Involving Multiple Appell Polynomials, Iran. J. Sci. Technol. Trans. Sci. 43, 1679–1687 (2019). https://doi.org/10.1007/s40995-018-0613-x
[11] Jakimovski, A., Leviatan, D., Generalized Szász operators for the approximation in the infinite interval. Mathematica (Cluj) 11(34), 97–103 (1969)
[12] Lee, D.W., On multiple Appell polynomials. Proc. Amer. Math. Soc. 139(6), 2133–2141 (2011)
[13] Mazhar, S.M., Totik, V., Approximation by modified Szász operators. Acta Sci. Math. 49, 257–269 (1985)
[14] Mirakjan, G.M., Approximation of continuous functions with the aid of polynomials (Russian), C.R. (Doklady). Acad. Sci. URSS (N.S.) 31, 201–205 (1941)
[15] Nasiruzzaman, M., Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results. Math. Found. Comput. 6(2), 218–230 (2023)
[16] Nasiruzzaman, M., Aljohani, A.F., Approximation by Szász-Jakimovski-Leviatan-type operators via aid of Appell polynomials, J. Funct. Spaces, Vol. 2020, ID 9657489, 11 pages
[17] Shisha, O., Mond, B., The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 60, 1196–1200 (1968)
[18] Sikkema, P.C., On some linear positive operators. Indag. Math. 32, 327–337 (1970)
[19] Swarup, C., Gupta, P., Dubey, R., Mishra, V.N., Generalization of Szász-Mirakjan-Kantorovich operators using multiple Appell polynomials. J. Inequal. Appl. 2020, 156 (2020). https://doi.org/10.1186/s13660-020-02423-8
[20] Szász, O., Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Standards 45(3), 239–245 (1950)
[21] Varma, S., On a generalization of Szász operators by multiple Appell polynomials. Stud. Univ. Babe¸sBolyai Math. 58(3), 361–369 (2013)
[22] Wood, B., Generalized Szász operators for the approximation in the complex domain. SIAM J. Appl. Math. 17(4), 790–801 (1969)

Szász-Mirakjan-Durrmeyer operators defined by multiple Appell polynomials

Ulrich Abel 1 (D) ⋅ Octavian Agratini 2 (D) ⋅ Radu Păltănea 3 (D)
Abstract

The paper aims at approximating functions through a sequence of linear positive operators of continuous type. First we define the Appell polynomials of dimension d(d2)d(d\geq 2) and with their aid we expand the Szász-Mirakjan operators in the Durrmeyer sense. The investigation of the new class of operators involves the study of convergence by using the universal Bohman-Korovkin theorem and the indication of the error by using modulus of smoothness. The main results are given by the asymptotic expansion of both the operators and their derivatives with the explicit specification of all coefficients in a concise form. In particular, Voronovskaja type theorems are obtained.

Keywords Positive linear operator • Appell polynomial • Asymptotic expansion • Rate of convergence • Modulus of continuity

Mathematics Subject Classification Primary 41A36 • Secondary 41A60 • 33C65

1 Introduction

The paper falls within the field of Approximation Theory motivated by the fact that over time the interest in the study of linear approximation processes has experienced

00footnotetext: Octavian Agratini, Radu Păltănea: contributed equally to this work.
Ulrich Abel
Ulrich.Abel@mnd.thm.de
Octavian Agratini
agratini@ictp.acad.ro
Radu Păltănea
radupaltanea@yahoo.com
1 MND, Technische Hochschule Mittelhessen, Wilhelm-Leuschner-Straße 13, 61169 Friedberg, Germany
2 Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Street Fântânele 57, 400320 Cluj-Napoca, Romania
3 Department of Mathematics, Transilvania University, Street Eroilor 29, 500036 Braşov, Romania

a wide development. This is justified by providing an easy-to-use method of modeling signals belonging to various spaces of functions.

The published researches focused on different aspects: revealing new properties of classical positive linear operators, integral extensions of discrete operators, generalizations of these operators by introducing some parameters, or by multidimensional extensions. For an overview of this domain, Altomare and Campiti’s monograph [4] can be consulted.

The Szász-Mirakjan operators [20], [14], are among the most intensively studied positive linear operators of discrete type. In 1969 Jakimovski and Leviatan [11] presented a generalization of this approximation process involving the Appell polynomials. We recall that the sequence (Pn(x))n0\left(P_{n}(x)\right)_{n\geq 0} of polynomials introduced by Paul Émile Appell [7] satisfies the fundamental relation

ddxPn(x)=nPn1(x),n1,\frac{d}{dx}P_{n}(x)=nP_{n-1}(x),n\geq 1, (1)

P0(x)P_{0}(x) being a non-zero constant.
This sequence has a generating function of the form

A(t)ext=n=0Pn(x)tnn!,x,A(t)e^{xt}=\sum_{n=0}^{\infty}P_{n}(x)\frac{t^{n}}{n!},x\in\mathbb{C}, (2)

where A(t)A(t) is an analytic function with a power series expansion

A(t)=k=0aktkk!A(t)=\sum_{k=0}^{\infty}a_{k}\frac{t^{k}}{k!} (3)

in the disk |t|<R,R>1|t|<R,R>1, with A(0)0A(0)\neq 0. The property given in (1) is equivalent to the existence of a scalar sequence (bk)k0\left(b_{k}\right)_{k\geq 0} with b00b_{0}\neq 0, such that

Pn(x)=k=0(bkk!Dk)xn,P_{n}(x)=\sum_{k=0}^{\infty}\left(\frac{b_{k}}{k!}D^{k}\right)x^{n},

where D=ddxD=\frac{d}{dx}.
The class of these polynomials is comprehensive, containing as special cases a large number of classical sequences of polynomials. Examples, up to normalization, are the Bernoulli polynomials, the Euler polynomials, the Hermite polynomials. This is one of the reasons that paper [11] served as a starting point for numerous articles that appeared over time.

Set +=[0,)\mathbb{R}_{+}=[0,\infty). Denoting by E(+)E\left(\mathbb{R}_{+}\right)the class of functions of exponential type which satisfy the property |f(t)|ceat,t0|f(t)|\leq ce^{at},t\geq 0, for some finite positive constants cc and aa, Jakimovski and Leviatan defined the operators Ln:E(+)C(+)L_{n}:E\left(\mathbb{R}_{+}\right)\rightarrow C\left(\mathbb{R}_{+}\right),

(Lnf)(x)=enxA(1)k=01k!Pk(nx)f(kn),n.\left(L_{n}f\right)(x)=\frac{e^{-nx}}{A(1)}\sum_{k=0}^{\infty}\frac{1}{k!}P_{k}(nx)f\left(\frac{k}{n}\right),n\in\mathbb{N}. (4)

Wood [22, Theorem 2.1] proved that Ln,n1L_{n},n\geq 1, are positive operators in [ 0,0,\infty ) if and only if

akA(1)0,k0={0},\frac{a_{k}}{A(1)}\geq 0,k\in\mathbb{N}_{0}=\{0\}\cup\mathbb{N},

where aka_{k} are the coefficients in (3).
In the particular case A(t)=1A(t)=1, from (2) we deduce Pn(x)=xnP_{n}(x)=x^{n} and the operators defined by (4) turn into classical Szász-Mirakjan operators.

The purpose of the present paper is to define an integral modification in Durrmeyer sense of a generalization of operators Ln,n1L_{n},n\geq 1. This construction involves a multiple Appell system on a space of dimension d,d2d\in\mathbb{N},d\geq 2. Our first challenge is the definition of Appell polynomials in dd-dimensional space. Regarding the new class of operators introduced, we investigate its approximation properties, including the complete asymptotic expansion with the explicit indication of all coefficients, also with respect to simultaneous approximation, in a concise form.

Our obtained results are integrated into the landscape of recently published publications. For confirmation we cite some papers that aim at generalizations of Jakimovski-Leviatan operators. Varma [21] studied a bidimensional extension of discrete operators Ln,n1L_{n},n\geq 1. New one and two dimensional variants of these discrete operators have been studied in 2020 and 2023, see [16] and [15]. Due to the properties of Appell polynomials, they have been intensively used in different constructions of several general classes of operators. Thus, using the power summability method, a generalized class of Szasz operators was investigated in [8]. A one dimensional Durrmeyer extension of Ln,n1L_{n},n\geq 1, operators involving Brenke type polynomials was approached in [3]. A similar extension with the aid of two-dimensional Appell polynomials was defined and explored by Ansari, Mursaleen and Rahman [6]. The Kantorovich type modification of Jakimovski-Leviatan operators based on Appell polynomials of dimension two was obtained, for example, in [9] and [19]. To complete the information about the operators of Kantorovich type implying multiple Appell polynomials we mention paper [10] in which the authors establish quantitative Voronovskaja and Grüss Voronovskaja-type theorems.

Finally, we mention that there are many papers that contain the expression multiple Appell polynomials in the title, the authors referring to the two-dimensional case. Consequently, our research is a substantial extension.

2 The operators

First of all we introduce useful notations to define our operators. Let dd\in\mathbb{N} be fixed. We use the following multi-index notation: for 𝒗=(v1,,vd)0d\boldsymbol{v}=\left(v_{1},\ldots,v_{d}\right)\in\mathbb{N}_{0}^{d} we set
|𝝂|=ν1++νd|\boldsymbol{\nu}|=\nu_{1}+\ldots+\nu_{d}. For real mm, the multinomial coefficient is defined as

(mv1,,vd)=Γ(m+1)v1!vd!Γ(m|𝒗|+1),m>|𝒗|1,\binom{m}{v_{1},\ldots,v_{d}}=\frac{\Gamma(m+1)}{v_{1}!\ldots v_{d}!\Gamma(m-|\boldsymbol{v}|+1)},m>|\boldsymbol{v}|-1,

where Γ\Gamma stands for Gamma function. We recall that the condition 𝒗0\boldsymbol{v}\geq 0 means that all coordinates of the vector 𝒗\boldsymbol{v} are greater than or equal to zero. Since 0dd,𝒗+𝝁\mathbb{N}_{0}^{d}\subset\mathbb{R}^{d},\boldsymbol{v}+\boldsymbol{\mu} and 𝒗𝝁\boldsymbol{v}-\boldsymbol{\mu} represent usual operations in the vector space d\mathbb{R}^{d}.

A multiple polynomial system {sν1,,νd(x)}ν1,,νd=0\left\{s_{\nu_{1},\ldots,\nu_{d}}(x)\right\}_{\nu_{1},\ldots,\nu_{d}=0}^{\infty} with deg(sν1,,νd)=|𝝂|\operatorname{deg}\left(s_{\nu_{1},\ldots,\nu_{d}}\right)=|\boldsymbol{\nu}| is called a multiple Appell system if it has a generating function of the form

H(t1,,td)ex|t|=v0sv1,,vd(x)v1!vd!t1v1tdvdH\left(t_{1},\ldots,t_{d}\right)e^{x|t|}=\sum_{v\geq 0}\frac{s_{v_{1},\ldots,v_{d}}(x)}{v_{1}!\ldots v_{d}!}t_{1}^{v_{1}}\ldots t_{d}^{v_{d}} (5)

where the real analytic function HH has a series expansion on an open set UdU\subset\mathbb{R}^{d} in a neighborhood of the origin, containing (1,,1)(1,\ldots,1), given by

H(t1,,td)=v0hv1,,vdv1!vd!t1v1tdvdH\left(t_{1},\ldots,t_{d}\right)=\sum_{v\geq 0}\frac{h_{v_{1},\ldots,v_{d}}}{v_{1}!\ldots v_{d}!}t_{1}^{v_{1}}\ldots t_{d}^{v_{d}} (6)

with H(0,,0)=h0,,00H(0,\ldots,0)=h_{0,\ldots,0}\neq 0.
For d=2d=2 we rediscover the definition that appeared in several papers, for example in [12, Eqs. (2.1),(2.2)], [21, Eqs. (1.4),(1.5)], [6, Eq. (1.5)] or [9, Eq. (1.1)].

For our purposes we will impose some restrictions on the Appell system introduced above. We consider throughout the paper that the following conditions are met

H(1,,1)0 and hν1,,νdH(1,,1)0 for all 𝒗=(ν1,,νd)0dH(1,\ldots,1)\neq 0\text{ and }\frac{h_{\nu_{1},\ldots,\nu_{d}}}{H(1,\ldots,1)}\geq 0\text{ for all }\boldsymbol{v}=\left(\nu_{1},\ldots,\nu_{d}\right)\in\mathbb{N}_{0}^{d} (7)

Further we define the discrete dd-dimensional operators of Szász-JakimovskiLeviatan by the formula

(SnHf)(x)\displaystyle\left(S_{n}^{H}f\right)(x) =enxH(1,,1)v1=0vd=01v1!vd!sv1,,vd(nxd)f(v1++vdn)\displaystyle=\frac{e^{-nx}}{H(1,\ldots,1)}\sum_{v_{1}=0}^{\infty}\cdots\sum_{v_{d}=0}^{\infty}\frac{1}{v_{1}!\ldots v_{d}!}s_{v_{1},\ldots,v_{d}}\left(\frac{nx}{d}\right)f\left(\frac{v_{1}+\ldots+v_{d}}{n}\right)
=enxH(1,,1)v0sv1,,vd(nx/d)v1!vd!f(|𝒗|n),n,x+\displaystyle=\frac{e^{-nx}}{H(1,\ldots,1)}\sum_{v\geq 0}\frac{s_{v_{1},\ldots,v_{d}}(nx/d)}{v_{1}!\ldots v_{d}!}f\left(\frac{|\boldsymbol{v}|}{n}\right),n\in\mathbb{N},x\in\mathbb{R}_{+} (8)

whenever the right-hand side of (8) is finite.
In the special case d=2d=2 we find the construction from [21, Eq. (1.6)], the author proving various approximation properties of the sequence. Replacing in (8) the point evaluation f(|𝝂|/n)f(|\boldsymbol{\nu}|/n) with the integral

n|𝒗|!0ent(nt)|𝒗|f(t)dt=:Φn,|ν|(f),n,ν0d,ν0\frac{n}{|\boldsymbol{v}|!}\int_{0}^{\infty}e^{-nt}(nt)^{|\boldsymbol{v}|}f(t)dt=:\Phi_{n,|\nu|}(f),n\in\mathbb{N},\nu\in\mathbb{N}_{0}^{d},\nu\geq 0 (9)

we propose the following type of Durrmeyer operators

(S¯nHf)(x)=enxH(1,,1)v01v1!vd!sv1vd(nxd)Φn,|v|(f),\left(\bar{S}_{n}^{H}f\right)(x)=\frac{e^{-nx}}{H(1,\ldots,1)}\sum_{v\geq 0}\frac{1}{v_{1}!\ldots v_{d}!}s_{v_{1}\ldots v_{d}}\left(\frac{nx}{d}\right)\Phi_{n,|v|}(f), (10)

where x+,nx\in\mathbb{R}_{+},n\in\mathbb{N}. We denote by D(+)D\left(\mathbb{R}_{+}\right)the space of functions to which ff belongs such that (10) is well defined for all nn\in\mathbb{N}.

If we consider the function expa(t)=eat,t+\exp_{a}(t)=e^{at},t\in\mathbb{R}_{+}, where a>0a>0, we get, for n>an>a,

Φn,|ν|(expa)=n|ν|!0et(nnat)|ν|dtna=(nna)|ν|+1\Phi_{n,|\nu|}\left(\exp_{a}\right)=\frac{n}{|\nu|!}\int_{0}^{\infty}e^{-t}\left(\frac{n}{n-a}t\right)^{|\nu|}\frac{dt}{n-a}=\left(\frac{n}{n-a}\right)^{|\nu|+1}

Hence, (S¯nHf)(expa)\left(\bar{S}_{n}^{H}f\right)\left(\exp_{a}\right) is well defined for all nn, which are so large that (nna,,nna)U\left(\frac{n}{n-a},\ldots,\frac{n}{n-a}\right)\in U.

Obviously, the operators are linear and due to the conditions imposed on the multiple Appell polynomials, see (7), they are also positive. This shows that S¯nHf\bar{S}_{n}^{H}f is well defined for all fE(+)f\in E\left(\mathbb{R}_{+}\right), provided that nn is sufficiently large.

Remark 1 In the special case H(t1,,td)=1H\left(t_{1},\ldots,t_{d}\right)=1 for all 𝒕\boldsymbol{t}, based on (5) we get

ex|𝒕|=𝒗01v1!vd!(xt1)v1(xtd)vde^{x|\boldsymbol{t}|}=\sum_{\boldsymbol{v}\geq 0}\frac{1}{v_{1}!\ldots v_{d}!}\left(xt_{1}\right)^{v_{1}}\ldots\left(xt_{d}\right)^{v_{d}}

and this implies sν1,,νd(x)=x|𝝂|,x0s_{\nu_{1},\ldots,\nu_{d}}(x)=x^{|\boldsymbol{\nu}|},x\geq 0. Consequently, we can write

(S¯nH1f)(x)=enx𝒗0(nx/d)|𝒗|v1!vd!n|𝒗|!0ent(nt)|𝒗|f(t)𝑑t\left(\bar{S}_{n}^{H\equiv 1}f\right)(x)=e^{-nx}\sum_{\boldsymbol{v}\geq 0}\frac{(nx/d)^{|\boldsymbol{v}|}}{v_{1}!\ldots v_{d}!}\frac{n}{|\boldsymbol{v}|!}\int_{0}^{\infty}e^{-nt}(nt)^{|\boldsymbol{v}|}f(t)dt

In the one-dimensional case, these operators are exactly the classical SzászDurrmeyer operators introduced and studied by Mazhar and Totik [13]

(S¯nH1f)(x)(Mnf)(x)=nk=0sn,k(x)0sn,k(t)f(t)𝑑t,x0\left(\bar{S}_{n}^{H\equiv 1}f\right)(x)\equiv\left(M_{n}f\right)(x)=n\sum_{k=0}^{\infty}s_{n,k}(x)\int_{0}^{\infty}s_{n,k}(t)f(t)dt,x\geq 0

where sn,k(x)=enx(nx)k/k!,k0s_{n,k}(x)=e^{-nx}(nx)^{k}/k!,k\in\mathbb{N}_{0}.
Finally, starting from HH, we introduce

h(z)=H(z,,z)H(1,,1)h(z)=\frac{H(z,\ldots,z)}{H(1,\ldots,1)} (11)

a key function that will be used to prove our results. Relying on (6), the properties of HH imply that hh is infinitely differentiable on a one-dimensional domain that includes a compact of the form [0,R][0,R] with R>1R>1.

3 Preliminary results

At the beginning we determine the derivatives of the multiple Appell polynomials introduced in the previous section.

Lemma 1 For j0j\in\mathbb{N}_{0} the following formula

sv1,,vd(j)(x)=v1!vd!μ+π=v|π|=j(jπ1,,πd)sμ1,,μd(x)μ1!μd!s_{v_{1},\ldots,v_{d}}^{(j)}(x)=v_{1}!\ldots v_{d}!\sum_{\begin{subarray}{c}\mu+\pi=v\\ |\pi|=j\end{subarray}}\binom{j}{\pi_{1},\ldots,\pi_{d}}\frac{s_{\mu_{1},\ldots,\mu_{d}}(x)}{\mu_{1}!\ldots\mu_{d}!}

holds.
Proof For j=0j=0 the equation is evident. Differentiating both sides of relation (5) jj times (j)(j\in\mathbb{N}) with respect to xx, we obtain

𝒗0sv1,,vd(j)(x)v1!vd!t1v1tdvd=|𝒕|jH(t1,,td)ex|𝒕|\displaystyle\sum_{\boldsymbol{v}\geq 0}\frac{s_{v_{1},\ldots,v_{d}}^{(j)}(x)}{v_{1}!\ldots v_{d}!}t_{1}^{v_{1}}\ldots t_{d}^{v_{d}}=|\boldsymbol{t}|^{j}H\left(t_{1},\ldots,t_{d}\right)e^{x|\boldsymbol{t}|}
=|𝝅|=j(jπ1,,πd)t1π1tdπd𝝁0sμ1,,μd(x)μ1!μd!t1μ1tdμd\displaystyle\quad=\sum_{|\boldsymbol{\pi}|=j}\binom{j}{\pi_{1},\ldots,\pi_{d}}t_{1}^{\pi_{1}}\ldots t_{d}^{\pi_{d}}\sum_{\boldsymbol{\mu}\geq 0}\frac{s_{\mu_{1},\ldots,\mu_{d}}(x)}{\mu_{1}!\ldots\mu_{d}!}t_{1}^{\mu_{1}}\ldots t_{d}^{\mu_{d}}
=𝒗0t1v1tdvd𝝁+𝝅=𝒗|𝝅|=j(jπ1,,πd)sμ1,,μd(x)μ1!μd!\displaystyle\quad=\sum_{\boldsymbol{v}\geq 0}t_{1}^{v_{1}}\ldots t_{d}^{v_{d}}\sum_{\begin{subarray}{c}\boldsymbol{\mu}+\boldsymbol{\pi}=\boldsymbol{v}\\ |\boldsymbol{\pi}|=j\end{subarray}}\binom{j}{\pi_{1},\ldots,\pi_{d}}\frac{s_{\mu_{1},\ldots,\mu_{d}}(x)}{\mu_{1}!\ldots\mu_{d}!}

Identifying the corresponding coefficients leads us to the desired formula. \square

Remark 2 From Lemma 1 it follows implicitly that sv1,,vd(j)(x)=0s_{v_{1},\ldots,v_{d}}^{(j)}(x)=0 if |𝒗|<j|\boldsymbol{v}|<j.
Let er,r0e_{r},r\in\mathbb{N}_{0}, denote the monomials defined by er(x)=xre_{r}(x)=x^{r}. For technical reasons we consider in the following the slightly more general auxiliary operators S¯n,jH,j0\bar{S}_{n,j}^{H},j\in\mathbb{N}_{0}, given by

(S¯n,jHf)(x)=enxH(1,,1)𝒗01v1!vd!sv1,,vd(nxd)Φn,|𝒗|+j(f),\left(\bar{S}_{n,j}^{H}f\right)(x)=\frac{e^{-nx}}{H(1,\ldots,1)}\sum_{\boldsymbol{v}\geq 0}\frac{1}{v_{1}!\ldots v_{d}!}s_{v_{1},\ldots,v_{d}}\left(\frac{nx}{d}\right)\Phi_{n,|\boldsymbol{v}|+j}(f), (12)

where Φn,|𝒗|+j\Phi_{n,|\boldsymbol{v}|+j} is defined as in (9) and fDj(+)f\in D_{j}\left(\mathbb{R}_{+}\right), where Dj(+)D_{j}\left(\mathbb{R}_{+}\right)is the space of functions ff for which S¯n,jHf\bar{S}_{n,j}^{H}f is well defined for all nn\in\mathbb{N}. As in the special case j=0j=0, it can be seen that S¯n,jHf\bar{S}_{n,j}^{H}f is well defined for all fE(+)f\in E\left(\mathbb{R}_{+}\right), provided that nn is sufficiently large.

Obviously, we have S¯nHS¯n,0H\bar{S}_{n}^{H}\equiv\bar{S}_{n,0}^{H}.

Lemma 2 For each rr and jj belonging to 0\mathbb{N}_{0}, the moments S¯n,jHer\bar{S}_{n,j}^{H}e_{r} of the operators S¯n,jH\bar{S}_{n,j}^{H} are given by

(S¯n,jHer)(x)=k=0rxrknk(rk)(ddz)k(zr+jh(z))|z=1\left(\bar{S}_{n,j}^{H}e_{r}\right)(x)=\left.\sum_{k=0}^{r}\frac{x^{r-k}}{n^{k}}\binom{r}{k}\left(\frac{d}{dz}\right)^{k}\left(z^{r+j}h(z)\right)\right|_{z=1} (13)

Proof Examining relation (9), we notice that for any p0p\in\mathbb{N}_{0} we can write

Φn,p(er)\displaystyle\Phi_{n,p}\left(e_{r}\right) =np!0ent(nt)per(t)𝑑t=1nrp!0eyyp+r𝑑y\displaystyle=\frac{n}{p!}\int_{0}^{\infty}e^{-nt}(nt)^{p}e_{r}(t)dt=\frac{1}{n^{r}p!}\int_{0}^{\infty}e^{-y}y^{p+r}dy
=1nr(ddz)rzp+r|z=1\displaystyle=\left.\frac{1}{n^{r}}\left(\frac{d}{dz}\right)^{r}z^{p+r}\right|_{z=1}

Hence, using relations (5) and (12), we get

(S¯n,jHer)(x)\displaystyle\left(\bar{S}_{n,j}^{H}e_{r}\right)(x) =enxnrH(1,,1)[(ddz)rzr+j𝒗0sν1,,νd(nx/d)ν1!νd!z|𝒗|]|z=1\displaystyle=\left.\frac{e^{-nx}}{n^{r}H(1,\ldots,1)}\left[\left(\frac{d}{dz}\right)^{r}z^{r+j}\sum_{\boldsymbol{v}\geq 0}\frac{s_{\nu_{1},\ldots,\nu_{d}}(nx/d)}{\nu_{1}!\ldots\nu_{d}!}z^{|\boldsymbol{v}|}\right]\right|_{z=1}
=enxnr(ddz)r(zr+jh(z)enxz)|z=1\displaystyle=\left.\frac{e^{-nx}}{n^{r}}\left(\frac{d}{dz}\right)^{r}\left(z^{r+j}h(z)e^{nxz}\right)\right|_{z=1}

Application of the Leibniz rule for differentiation yields the relation (13).

The next step is to express the central moments of the auxiliary operator S¯n,jH\bar{S}_{n,j}^{H}. For each real number xx, we define the function ψx\psi_{x} by ψx=e1xe0\psi_{x}=e_{1}-xe_{0}.

Lemma 3 For each s0s\in\mathbb{N}_{0}, the central moment of order s of the operator S¯n,jH\bar{S}_{n,j}^{H} is given by

(S¯n,jHψxs)(x)=k=0s1nk(sk)xsk(ksk)(sk)!(ddz)2ks(zk+jh(z))|z=1\left(\bar{S}_{n,j}^{H}\psi_{x}^{s}\right)(x)=\left.\sum_{k=0}^{s}\frac{1}{n^{k}}\binom{s}{k}x^{s-k}\binom{k}{s-k}(s-k)!\left(\frac{d}{dz}\right)^{2k-s}\left(z^{k+j}h(z)\right)\right|_{z=1} (14)

Proof Since S¯n,jHe0=e0\bar{S}_{n,j}^{H}e_{0}=e_{0}, by (13) we have

(S¯n,jHψxs)(x)\displaystyle\left(\bar{S}_{n,j}^{H}\psi_{x}^{s}\right)(x) =r=0s(sr)(x)sr(S¯n,jHer)(x)\displaystyle=\sum_{r=0}^{s}\binom{s}{r}(-x)^{s-r}\left(\bar{S}_{n,j}^{H}e_{r}\right)(x)
=k=0s1nkxskr=ks(1)sr(sr)(rk)(ddz)k(zr+jh(z))|z=1\displaystyle=\left.\sum_{k=0}^{s}\frac{1}{n^{k}}x^{s-k}\sum_{r=k}^{s}(-1)^{s-r}\binom{s}{r}\binom{r}{k}\left(\frac{d}{dz}\right)^{k}\left(z^{r+j}h(z)\right)\right|_{z=1}

Using the binomial identity (sr)(rk)=(sk)(skrk)\binom{s}{r}\binom{r}{k}=\binom{s}{k}\binom{s-k}{r-k} and index change replacing rr with r+kr+k, we obtain

(S¯n,jHψxs)(x)\displaystyle\left(\bar{S}_{n,j}^{H}\psi_{x}^{s}\right)(x) =k=0s1nk(sk)xskr=0sk(1)skr(skr)(ddz)k(zr+j+kh(z))|z=1\displaystyle=\left.\sum_{k=0}^{s}\frac{1}{n^{k}}\binom{s}{k}x^{s-k}\sum_{r=0}^{s-k}(-1)^{s-k-r}\binom{s-k}{r}\left(\frac{d}{dz}\right)^{k}\left(z^{r+j+k}h(z)\right)\right|_{z=1}
=k=0s1nk(sk)xsk(ddz)k(zk+jh(z)(z1)sk)|z=1.\displaystyle=\left.\sum_{k=0}^{s}\frac{1}{n^{k}}\binom{s}{k}x^{s-k}\left(\frac{d}{dz}\right)^{k}\left(z^{k+j}h(z)(z-1)^{s-k}\right)\right|_{z=1}.

Further, we apply Leibniz rule to the product.
Also, involving the Kronecker delta symbol, we observe that

(ddz)m(z1)sk|z=1=(sk)!δm,sk\left.\left(\frac{d}{dz}\right)^{m}(z-1)^{s-k}\right|_{z=1}=(s-k)!\delta_{m,s-k}

Assembling the results, we obtain relation (14).

4 Main results

We highlight some global and local approximation properties of S¯nH,n\bar{S}_{n}^{H},n\in\mathbb{N}, operators. Using Lemma 2 and knowing that h(1)=1h(1)=1, see (11), through a direct calculation, we obtain the first three moments of the operators namely

S¯nHe0=e0,\displaystyle\bar{S}_{n}^{H}e_{0}=e_{0},
S¯nHe1=e1+1n(1+h(1))e0,\displaystyle\bar{S}_{n}^{H}e_{1}=e_{1}+\frac{1}{n}\left(1+h^{\prime}(1)\right)e_{0},
S¯nHe2=e2+2n(2+h(1))e1+1n2(2+4h(1)+h′′(1))e0.\displaystyle\bar{S}_{n}^{H}e_{2}=e_{2}+\frac{2}{n}\left(2+h^{\prime}(1)\right)e_{1}+\frac{1}{n^{2}}\left(2+4h^{\prime}(1)+h^{\prime\prime}(1)\right)e_{0}.

Also, applying Lemma 3 and the above three identities, the central moments of order s,s{1,2}s,s\in\{1,2\}, are given as follows

(S¯nHψx1)(x)=1n(1+h(1)),\displaystyle\left(\bar{S}_{n}^{H}\psi_{x}^{1}\right)(x)=\frac{1}{n}\left(1+h^{\prime}(1)\right),
(S¯nHψx2)(x)=2nx+1n2(2+4h(1)+h′′(1)).\displaystyle\left(\bar{S}_{n}^{H}\psi_{x}^{2}\right)(x)=\frac{2}{n}x+\frac{1}{n^{2}}\left(2+4h^{\prime}(1)+h^{\prime\prime}(1)\right). (15)

Clearly, we get

limn(S¯nHej)(x)=ej(x),x+,j{0,1,2}.\lim_{n\rightarrow\infty}\left(\bar{S}_{n}^{H}e_{j}\right)(x)=e_{j}(x),x\in\mathbb{R}_{+},j\in\{0,1,2\}. (16)

However, we cannot apply the classical Korovkin theorem to obtain the uniform approximation on compacts of functions from the space ( +\mathbb{R}_{+}) by the sequence of
operators (S¯nH)n\left(\bar{S}_{n}^{H}\right)_{n}, because the interval +\mathbb{R}_{+}is not compact. It is only locally compact. For this we will appeal to the following Korovkin-type theorem of Altomare [5, Theorem 3.5]. Using the notations given there, this theorem reads as follows.

Theorem A Let ( X,dX,d ) be a locally compact metric space and consider a lattice subspace EE of F(X)F(X) containing the constant function 𝟏\mathbf{1} and all the functions dx2(xX)d_{x}^{2}(x\in X). Let (Ln)n1\left(L_{n}\right)_{n\geq 1} be a sequence of positive linear operators from EE into F(X)F(X) and assume that
(i) limnLn(𝟏)=𝟏\lim_{n\rightarrow\infty}L_{n}(\mathbf{1})=\mathbf{1}, uniformly on compact subsets of XX;
(ii) limnLn(dx2)(x)=0\lim_{n\rightarrow\infty}L_{n}\left(d_{x}^{2}\right)(x)=0, uniformly on compact subsets of XX.

Then, for every fECb(X),limnLn(f)=ff\in E\cap C_{b}(X),\lim_{n\rightarrow\infty}L_{n}(f)=f, uniformly on compact subsets of XX.

In this theorem, F(X)F(X) denotes the space of real functions defined on X,𝟏X,\mathbf{1} denotes the constant function equal to 1,dx1,d_{x} denotes the function dx(y)=d2(x,y),yXd_{x}(y)=d^{2}(x,y),y\in X and Cb(X)C_{b}(X) denotes the space of real continuous bounded functions defined on XX.

We also need of the following limit, which follows immediately from (15):

limn(S¯nHψx2)(x)=0, uniformly on compact sets of +.\lim_{n\rightarrow\infty}\left(\bar{S}_{n}^{H}\psi_{x}^{2}\right)(x)=0,\text{ uniformly on compact sets of }\mathbb{R}_{+}. (17)

We denote by CB(+)C_{B}\left(\mathbb{R}_{+}\right)the Banach lattice of all real-valued continuous and bounded functions on +\mathbb{R}_{+}, endowed with the sup-norm ,f=supx0|f(x)|\|\cdot\|_{\infty},\|f\|_{\infty}=\sup_{x\geq 0}|f(x)|. If K+K\subset\mathbb{R}_{+} is a compact interval, the same norm is valid in the space C(K)C(K).

Remark3 For each n,S¯nHn\in\mathbb{N},\bar{S}_{n}^{H} maps continuously CB(+)C_{B}\left(\mathbb{R}_{+}\right)into itself. This means that CB(+)D(+)C_{B}\left(\mathbb{R}_{+}\right)\subset D\left(\mathbb{R}_{+}\right). For fCB(+)f\in C_{B}\left(\mathbb{R}_{+}\right), we have |Φn,|𝒗|(f)|f,|𝒗|0\left|\Phi_{n,|\boldsymbol{v}|}(f)\right|\leq\|f\|_{\infty},|\boldsymbol{v}|\in\mathbb{N}_{0}, and based on the value of Sn,|𝒗|He0S_{n,|\boldsymbol{v}|}^{H}e_{0} we deduce SnHff\left\|S_{n}^{H}f\right\|_{\infty}\leq\|f\|_{\infty}.

Theorem 1 Let the operators S¯nH,n\bar{S}_{n}^{H},n\in\mathbb{N}, be defined by (10). For any compact interval K+K\subset\mathbb{R}_{+}, the following relation

limnS¯nHf=f uniformly on K\lim_{n\rightarrow\infty}\bar{S}_{n}^{H}f=f\text{ uniformly on }K (18)

occurs, provided fCB(+)f\in C_{B}\left(\mathbb{R}_{+}\right).
Proof We can apply the theorem of Altomare, given above, with the following choices: X=+,d(x,y)=|xy|,x,yX,E=D(+),Cb(X)=CB(+),𝟏=e0X=\mathbb{R}_{+},d(x,y)=|x-y|,x,y\in X,E=D\left(\mathbb{R}_{+}\right),C_{b}(X)=C_{B}\left(\mathbb{R}_{+}\right),\mathbf{1}=e_{0}, dx2=ψx2d_{x}^{2}=\psi_{x}^{2} and Ln=S¯nHL_{n}=\bar{S}_{n}^{H}.

We take into account that CB(+)D(+)=CB(+)C_{B}\left(\mathbb{R}_{+}\right)\cap D\left(\mathbb{R}_{+}\right)=C_{B}\left(\mathbb{R}_{+}\right).
The rate of convergence is established by using modulus of continuity defined for a function f:+f:\mathbb{R}_{+}\rightarrow\mathbb{R} by

ωf(δ)ω(f;δ)=sup{|f(x)f(x′′)|:x,x′′+,|xx′′|δ}\omega_{f}(\delta)\equiv\omega(f;\delta)=\sup\left\{\left|f\left(x^{\prime}\right)-f\left(x^{\prime\prime}\right)\right|:x^{\prime},x^{\prime\prime}\in\mathbb{R}_{+},\left|x^{\prime}-x^{\prime\prime}\right|\leq\delta\right\}

if this supremum is finite.

Denote by Bω(+)B_{\omega}\left(\mathbb{R}_{+}\right)the space of locally integrable functions f:+f:\mathbb{R}_{+}\rightarrow\mathbb{R} for which ω(f;δ)<\omega(f;\delta)<\infty, for all δ>0\delta>0. It is immediate that CB(+)Bω(+)C_{B}\left(\mathbb{R}_{+}\right)\subset B_{\omega}\left(\mathbb{R}_{+}\right)and UC(+)Bω(+)UC\left(\mathbb{R}_{+}\right)\subset B_{\omega}\left(\mathbb{R}_{+}\right), where UC(+)UC\left(\mathbb{R}_{+}\right)is the space of uniformly continuous functions on +\mathbb{R}_{+}.

Remark 4 Operators S¯nH,n\bar{S}_{n}^{H},n\in\mathbb{N}, are well defined on Bω(+)B_{\omega}\left(\mathbb{R}_{+}\right). Indeed, if fBω(+)f\in B_{\omega}\left(\mathbb{R}_{+}\right), then |f(t)|(1+t/δ)ω(f;δ)+|f(0)||f(t)|\leq(1+t/\delta)\omega(f;\delta)+|f(0)|, for t0,δ>0t\geq 0,\delta>0. It follows that the series of the absolute values of the terms of series (10) is bounded by |f(0)|+(1+(1/δ)(S¯nHe1)(x))ω(f;δ)<|f(0)|+(1+\left.(1/\delta)\left(\bar{S}_{n}^{H}e_{1}\right)(x)\right)\omega(f;\delta)<\infty.

Theorem 2 Let the operators S¯nH,n\bar{S}_{n}^{H},n\in\mathbb{N}, be defined by (10). For any function fBω(+)f\in B_{\omega}\left(\mathbb{R}_{+}\right), we have

|(S¯nHf)(x)f(x)|(1+2x+c(h)n)ω(f;1n),x0,\left|\left(\bar{S}_{n}^{H}f\right)(x)-f(x)\right|\leq\left(1+\sqrt{2x+\frac{c(h)}{n}}\right)\omega\left(f;\frac{1}{\sqrt{n}}\right),x\geq 0,

where c(h)=2+4h(1)+h′′(1)c(h)=2+4h^{\prime}(1)+h^{\prime\prime}(1).
Proof We use the following property proved by Shisha and Mond [17, Theorem 1] that says: if LL is a linear positive operator, then one has

|(Lf)(x)f(x)|\displaystyle|(Lf)(x)-f(x)|
|f(x)||(Le0)(x)1|+((Le0)(x)+1δ(Le0)(x)(Lψx2)(x))ω(f;δ),\displaystyle\leq|f(x)|\left|\left(Le_{0}\right)(x)-1\right|+\left(\left(Le_{0}\right)(x)+\frac{1}{\delta}\sqrt{\left(Le_{0}\right)(x)\left(L\psi_{x}^{2}\right)(x)}\right)\omega(f;\delta),

for every continuous function ff and δ>0\delta>0. We mention that in order to fulfill the condition ω(f;δ)<\omega(f;\delta)<\infty, the original relation was given for continuous functions defined on a compact. The proof of the Shisha and Mond theorem can be extended without any difficulty to space 𝑩ω(+)\boldsymbol{B}_{\omega}\left(\mathbb{R}_{+}\right)

Considering L:=S¯nHL:=\bar{S}_{n}^{H}, using the following two identities, S¯nHe0=e0\bar{S}_{n}^{H}e_{0}=e_{0} and (15) and finally choosing δ=1/n\delta=1/\sqrt{n}, we arrive at the stated relation.

Corollary 3 For any fUC(+)f\in UC\left(\mathbb{R}_{+}\right)we have

limn(S¯nHf)(x)=f(x), uniformly on compact sets of +.\lim_{n\rightarrow\infty}\left(\bar{S}_{n}^{H}f\right)(x)=f(x),\text{ uniformly on compact sets of }\mathbb{R}_{+}.

Proof We take into account that UC(+)Bω(+)UC\left(\mathbb{R}_{+}\right)\subset B_{\omega}\left(\mathbb{R}_{+}\right)and hence Theorem 2 can be applied. Also, because fUC(+)f\in UC\left(\mathbb{R}_{+}\right), we have

limn(1+2x+c(h)n)ω(f;1n)=0,\lim_{n\rightarrow\infty}\left(1+\sqrt{2x+\frac{c(h)}{n}}\right)\omega\left(f;\frac{1}{\sqrt{n}}\right)=0,

uniformly if xK,Kx\in K,K being a compact subset of +\mathbb{R}_{+}.

Note that the result in this Corollary cannot be compared with the result in Theorem 1 , because the spaces CB(+)C_{B}\left(\mathbb{R}_{+}\right)and UC(+)UC\left(\mathbb{R}_{+}\right)are not comparable.

The following result concerns the asymptotic expansion of the operators. To achieve this we require certain conditions to be satisfied by the function fD(+)f\in D\left(\mathbb{R}_{+}\right), these being similar to those appearing in Sikkema’s paper [18, Definition]. For x>0x>0 and ss\in\mathbb{N}, let K[s,x]K[s,x] denote the functions possessing the properties: ff is ss times differentiable at x,fx,f is bounded on every bounded interval of the domain and f(t)=𝒪(ts)f(t)=\mathcal{O}\left(t^{s}\right) as tt\rightarrow\infty. Moreover, we assume that all fK[s,x]f\in K[s,x] are locally integrable on +\mathbb{R}_{+}.

Theorem 4 Let the operators S¯n,jH,(n,j)×0\bar{S}_{n,j}^{H},(n,j)\in\mathbb{N}\times\mathbb{N}_{0}, be defined by (12). Given x>0x>0 and fK[2q,x]f\in K[2q,x], the asymptotic relation

(S¯n,jHf)(x)=f(x)+k=1qck,j(f,x)nk+o(nq)(n)\left(\bar{S}_{n,j}^{H}f\right)(x)=f(x)+\sum_{k=1}^{q}\frac{c_{k,j}(f,x)}{n^{k}}+o\left(n^{-q}\right)\quad(n\rightarrow\infty) (19)

holds, where the coefficients ck,j(f,x)c_{k,j}(f,x) are given by

ck,j(f,x)=1k!(ddz)k[zk+jh(z)f(k)(xz)]|z=1.c_{k,j}(f,x)=\left.\frac{1}{k!}\left(\frac{d}{dz}\right)^{k}\left[z^{k+j}h(z)f^{(k)}(xz)\right]\right|_{z=1}. (20)

Proof In particular Lemma 3 guarantees

(S¯n,jHψxs)(x)=𝒪(n(s+1)/2)(n)\left(\bar{S}_{n,j}^{H}\psi_{x}^{s}\right)(x)=\mathcal{O}\left(n^{-\lfloor(s+1)/2\rfloor}\right)\quad(n\rightarrow\infty)

Following Lemma 3 and Sikkema’s result, [18, Theorem 3], we infer that

(S¯n,jHf)(x)\displaystyle\left(\bar{S}_{n,j}^{H}f\right)(x) =s=02qf(s)(x)s!(S¯n,jψxs)(x)+o(nq)\displaystyle=\sum_{s=0}^{2q}\frac{f^{(s)}(x)}{s!}\left(\bar{S}_{n,j}\psi_{x}^{s}\right)(x)+o\left(n^{-q}\right)
=k=0qck,j(f,x)nk+o(nq)(n),\displaystyle=\sum_{k=0}^{q}\frac{c_{k,j}(f,x)}{n^{k}}+o\left(n^{-q}\right)\quad(n\rightarrow\infty),

with

ck,j(f,x)=s=k2kf(s)(x)s!(sk)xsk(ksk)(sk)!(ddz)2ks(zk+jh(z))|z=1.c_{k,j}(f,x)=\left.\sum_{s=k}^{2k}\frac{f^{(s)}(x)}{s!}\binom{s}{k}x^{s-k}\binom{k}{s-k}(s-k)!\left(\frac{d}{dz}\right)^{2k-s}\left(z^{k+j}h(z)\right)\right|_{z=1}.

Noting that

1s!(sk)(sk)!=1k!\frac{1}{s!}\binom{s}{k}(s-k)!=\frac{1}{k!}

and changing s:=k+ss:=k+s, we get

ck,j(f,x)\displaystyle c_{k,j}(f,x) =1k!s=0k(ks)xsf(k+s)(x)(ddz)ks(zk+jh(z))|z=1\displaystyle=\left.\frac{1}{k!}\sum_{s=0}^{k}\binom{k}{s}x^{s}f^{(k+s)}(x)\left(\frac{d}{dz}\right)^{k-s}\left(z^{k+j}h(z)\right)\right|_{z=1}
=1k!s=0k(ks)[(ddz)sf(k)(xz)][(ddz)ks(zk+jh(z))]|z=1\displaystyle=\left.\frac{1}{k!}\sum_{s=0}^{k}\binom{k}{s}\left[\left(\frac{d}{dz}\right)^{s}f^{(k)}(xz)\right]\left[\left(\frac{d}{dz}\right)^{k-s}\left(z^{k+j}h(z)\right)\right]\right|_{z=1}
=1k!(ddz)k[zk+jh(z)f(k)(xz)]|z=1,\displaystyle=\left.\frac{1}{k!}\left(\frac{d}{dz}\right)^{k}\left[z^{k+j}h(z)f^{(k)}(xz)\right]\right|_{z=1},

by the Leibniz rule for differentiation.
Since h(1)=1h(1)=1, it results c0,j(f,x)=f(x)c_{0,j}(f,x)=f(x) and the proof is completed.
For j=0j=0 the theorem includes the asymptotic expansion of the operators defined at (10).

For the convenience of the reader we present explicitly the first three coefficients.

c0(f,x)=f(x)\displaystyle c_{0}(f,x)=f(x)
c1(f,x)=(1+h(1))f(x)+xf′′(x)\displaystyle c_{1}(f,x)=\left(1+h^{\prime}(1)\right)f^{\prime}(x)+xf^{\prime\prime}(x) (21)
c2(f,x)=12(2+4h(1)+h′′(1))f(2)(x)+x(2+h(1))f(3)(x)+12x2f(4)(x)\displaystyle c_{2}(f,x)=\frac{1}{2}\left(2+4h^{\prime}(1)+h^{\prime\prime}(1)\right)f^{(2)}(x)+x\left(2+h^{\prime}(1)\right)f^{(3)}(x)+\frac{1}{2}x^{2}f^{(4)}(x)

Also, based on (19) and (20), a result of Voronovskaja type will have the following form.

Corollary 5 Given x>0x>0 and fK[2,x]f\in K[2,x], the operators S¯nH\bar{S}_{n}^{H} satisfy the asymptotic relation

limnn((S¯nHf)(x)f(x))=(1+h(1))f(x)+xf′′(x).\lim_{n\rightarrow\infty}n\left(\left(\bar{S}_{n}^{H}f\right)(x)-f(x)\right)=\left(1+h^{\prime}(1)\right)f^{\prime}(x)+xf^{\prime\prime}(x).

Another special case arises if we consider a (locally) very smooth function.
Corollary 6 Let x>0x>0. If fD(+)f\in D\left(\mathbb{R}_{+}\right)is of at most polynomial growth and infinitely differentiable at xx, then the operators S¯nH\bar{S}_{n}^{H} possess the complete pointwise asymptotic expansion

(S¯nHf)(x)f(x)+k=11k!nk(ddz)k[zk+jh(z)f(k)(xz)]|z=1(n).\left(\bar{S}_{n}^{H}f\right)(x)\sim f(x)+\left.\sum_{k=1}^{\infty}\frac{1}{k!n^{k}}\left(\frac{d}{dz}\right)^{k}\left[z^{k+j}h(z)f^{(k)}(xz)\right]\right|_{z=1}\quad(n\rightarrow\infty).

We mention that a similar approach was carried out both in [1, Theorem 3.1] with reference to Kantorovich-Szász-Mirakjan operators of higher order and in [2, Theorem 1.1] for the quasi-interpolants of Gauss-Weierstrass operators.

Further, we focus on the simultaneous approximation by our linear positive operators. At first step we represent the derivatives of S¯nHf\bar{S}_{n}^{H}f as a finite linear combination of the auxiliary operators S¯n,jHf,j0\bar{S}_{n,j}^{H}f,j\in\mathbb{N}_{0}.

Theorem 7 For any r0,nr\in\mathbb{N}_{0},n\in\mathbb{N}, the following identity

(ddx)r(S¯nHf)(x)=nrj=0r(1)rj(rj)(S¯n,jHf)(x)\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)=n^{r}\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}\left(\bar{S}_{n,j}^{H}f\right)(x) (22)

holds for fj=0rDj(+)f\in\bigcap_{j=0}^{r}D_{j}\left(\mathbb{R}_{+}\right)and x>0x>0.
Proof For r=0r=0, the formula is evident. Fixing arbitrarily rr\in\mathbb{N}, from (10) we have

(ddx)r(S¯nHf)(x)\displaystyle\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)
=enxH(1,,1)𝒗0j=0r(rj)(n)rj(nd)jsv1,,vd(j)(nx/d)v1!vd!Φn,|𝒗|(f).\displaystyle\quad=\frac{e^{-nx}}{H(1,\ldots,1)}\sum_{\boldsymbol{v}\geq 0}\sum_{j=0}^{r}\binom{r}{j}(-n)^{r-j}\left(\frac{n}{d}\right)^{j}\frac{s_{v_{1},\ldots,v_{d}}^{(j)}(nx/d)}{v_{1}!\ldots v_{d}!}\Phi_{n,|\boldsymbol{v}|}(f). (23)

As a consequence of Lemma 1 we obtain

(ddx)r(S¯nHf)(x)\displaystyle\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)
=j=0r(1)rj(rj)djnrenxH(1,,1)𝒗0𝒖π=𝒗|π|=j(jπ1,,πd)sμ1,,μd(nx/d)μ1!μd!Φn,|𝒗|(f).\displaystyle=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}d^{-j}\frac{n^{r}e^{-nx}}{H(1,\ldots,1)}\sum_{\begin{subarray}{c}\boldsymbol{v}\geq 0\\ \boldsymbol{u}^{\prime}\geq\pi=\boldsymbol{v}\\ |\pi|=j\end{subarray}}\binom{j}{\pi_{1},\ldots,\pi_{d}}\frac{s_{\mu_{1},\ldots,\mu_{d}}(nx/d)}{\mu_{1}!\ldots\mu_{d}!}\Phi_{n,|\boldsymbol{v}|}(f).

We can write

𝒗0𝝁+𝝅=𝒗|𝝅|=j(jπ1,,πd)sμ1,,μd(nx/d)μ1!μd!Φn,|𝒗|(f)\displaystyle\sum_{\begin{subarray}{c}\boldsymbol{v}\geq 0\\ \geq\end{subarray}}\sum_{\begin{subarray}{c}\boldsymbol{\mu}+\boldsymbol{\pi}=\boldsymbol{v}\\ |\boldsymbol{\pi}|=j\end{subarray}}\binom{j}{\pi_{1},\ldots,\pi_{d}}\frac{s_{\mu_{1},\ldots,\mu_{d}}(nx/d)}{\mu_{1}!\ldots\mu_{d}!}\Phi_{n,|\boldsymbol{v}|}(f)
=𝝁0sμ1,,μd(nx/d)μ1!μd!𝒗𝒗𝝁|𝒗|=|𝝁|+j(jv1μ1,,vdμd)Φn,|𝒗|(f)\displaystyle\quad=\sum_{\boldsymbol{\mu}\geq 0}\frac{s_{\mu_{1},\ldots,\mu_{d}}(nx/d)}{\mu_{1}!\ldots\mu_{d}!}\sum_{\begin{subarray}{c}\boldsymbol{v}\\ \boldsymbol{v}\geq\boldsymbol{\mu}\\ |\boldsymbol{v}|=|\boldsymbol{\mu}|+j\end{subarray}}\binom{j}{v_{1}-\mu_{1},\ldots,v_{d}-\mu_{d}}\Phi_{n,|\boldsymbol{v}|}(f)
=𝝁0sμ1,,μd(nx/d)μ1!μd!𝒗0|𝒗|=j(jv1,,vd)Φn,|𝝁|+j(f)\displaystyle\quad=\sum_{\boldsymbol{\mu}\geq 0}\frac{s_{\mu_{1},\ldots,\mu_{d}}(nx/d)}{\mu_{1}!\ldots\mu_{d}!}\sum_{\begin{subarray}{c}\boldsymbol{v}\geq 0\\ |\boldsymbol{v}|=j\end{subarray}}\binom{j}{v_{1},\ldots,v_{d}}\Phi_{n,|\boldsymbol{\mu}|+j}(f) (24)

Since

𝒗0|𝒗|=j(jv1,,vd)=dj\sum_{\begin{subarray}{c}\boldsymbol{v}\geq 0\\ |\boldsymbol{v}|=j\end{subarray}}\binom{j}{v_{1},\ldots,v_{d}}=d^{j}

using (24) in (23), we obtain
(ddx)r(S¯nHf)(x)=j=0r(1)rj(rj)djnrenxH(1,,1)μ0sμ1,,μd(nx/d)μ1!μd!Φn,|𝝁|+r(f)\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)=\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}\frac{d^{-j}n^{r}e^{-nx}}{H(1,\ldots,1)}\sum_{\mu\geq 0}\frac{s_{\mu_{1},\ldots,\mu_{d}}(nx/d)}{\mu_{1}!\ldots\mu_{d}!}\Phi_{n,|\boldsymbol{\mu}|+r}(f).

Taking in view (12), the above identity becomes the relation stated at (22) and the proof is finished.

Our last step is to obtain an asymptotic expansion of (S¯nHf)(r)\left(\bar{S}_{n}^{H}f\right)^{(r)} operators, rr\in\mathbb{N}, under certain conditions satisfied by the function ff. It turns out that the expansion given in Theorem 4, for j=0j=0, can be differentiated term-by-term.
Theorem 8 Let the operators S¯nH,n\bar{S}_{n}^{H},n\in\mathbb{N}, be defined by (10). Let rr\in\mathbb{N} and x>0x>0. For any fK[2(q+r),x]f\in K[2(q+r),x] the following relation

(ddx)r(S¯nHf)(x)=f(r)(x)+k=1qck(r)(f,x)nk+o(nq)(n)\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)=f^{(r)}(x)+\sum_{k=1}^{q}\frac{c_{k}^{(r)}(f,x)}{n^{k}}+o\left(n^{-q}\right)\quad(n\rightarrow\infty)

holds, where ck(f,x)=ck,0(f,x)c_{k}(f,x)=c_{k,0}(f,x) as defined in (20).
Proof Successively using relations (22), (19) and recalling that

f(x)=c0,j(f,x)f(x)=c_{0,j}(f,x)

we can write

(ddx)r(S¯nHf)(x)=\displaystyle\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)= nrj=0r(1)rj(rj)(S¯n,jHf)(x)\displaystyle n^{r}\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}\left(\bar{S}_{n,j}^{H}f\right)(x)
=\displaystyle= nrj=0r(1)rj(rj)[k=0q+rck,j(f,x)nk+o(n(q+r))]\displaystyle n^{r}\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}\left[\sum_{k=0}^{q+r}\frac{c_{k,j}(f,x)}{n^{k}}+o\left(n^{-(q+r)}\right)\right]
=\displaystyle= k=0q+r1nkrj=0r(1)rj(rj)ck,j(f,x)+o(nq),\displaystyle\sum_{k=0}^{q+r}\frac{1}{n^{k-r}}\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}c_{k,j}(f,x)+o\left(n^{-q}\right),
(n).\displaystyle(n\rightarrow\infty). (25)

Further, we have

j=0r(1)rj(rj)ck,j(f,x)\displaystyle\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}c_{k,j}(f,x) =1k!j=0r(1)rj(rj)(ddz)k[zk+jh(z)f(k)(xz)]|z=1\displaystyle=\left.\frac{1}{k!}\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}\left(\frac{d}{dz}\right)^{k}\left[z^{k+j}h(z)f^{(k)}(xz)\right]\right|_{z=1}
=1k!(ddz)k[zk(z1)rh(z)f(k)(xz)]|z=1\displaystyle=\left.\frac{1}{k!}\left(\frac{d}{dz}\right)^{k}\left[z^{k}(z-1)^{r}h(z)f^{(k)}(xz)\right]\right|_{z=1}
=1k!(kr)r!(ddz)kr[zkh(z)f(k)(xz)]|z=1\displaystyle=\left.\frac{1}{k!}\binom{k}{r}r!\left(\frac{d}{dz}\right)^{k-r}\left[z^{k}h(z)f^{(k)}(xz)\right]\right|_{z=1} (26)

In the above, we successively applied the relation (20), the elementary identity

j=0r(1)rj(rj)zj=(z1)r\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}z^{j}=(z-1)^{r}

and the formula

(ddz)m(z1)r|z=1=r!δm,r\left.\left(\frac{d}{dz}\right)^{m}(z-1)^{r}\right|_{z=1}=r!\delta_{m,r}

Since

j=0r(1)rj(rj)ck,j(f,x)=0 for k<r\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}c_{k,j}(f,x)=0\text{ for }k<r

mixing relations (26) and (25) we infer

(ddx)r(S¯nHf)(x)=\displaystyle\left(\frac{d}{dx}\right)^{r}\left(\bar{S}_{n}^{H}f\right)(x)= k=0q1nkj=0r(1)rj(rj)ck+r,j(f,x)+o(nq)\displaystyle\sum_{k=0}^{q}\frac{1}{n^{k}}\sum_{j=0}^{r}(-1)^{r-j}\binom{r}{j}c_{k+r,j}(f,x)+o\left(n^{-q}\right)
=\displaystyle= k=0q1k!nk(ddz)k[zk+rh(z)f(r+k)(xz)]|z=1+o(nq)\displaystyle\left.\sum_{k=0}^{q}\frac{1}{k!n^{k}}\left(\frac{d}{dz}\right)^{k}\left[z^{k+r}h(z)f^{(r+k)}(xz)\right]\right|_{z=1}+o\left(n^{-q}\right)
(n)\displaystyle(n\rightarrow\infty)

Applying (ddx)r\left(\frac{d}{dx}\right)^{r} in (20), for j=0j=0 we easily obtain

(ddx)rck,0(f,x)=1k!(ddz)k[zk+rh(z)f(r+k)(xz)]|z=1\left(\frac{d}{dx}\right)^{r}c_{k,0}(f,x)=\left.\frac{1}{k!}\left(\frac{d}{dz}\right)^{k}\left[z^{k+r}h(z)f^{(r+k)}(xz)\right]\right|_{z=1}

and

(ddx)rc0,0(f,x)=f(r)(x)\left(\frac{d}{dx}\right)^{r}c_{0,0}(f,x)=f^{(r)}(x)

The convention ck,0(f,x)ck(f,x),k0c_{k,0}(f,x)\equiv c_{k}(f,x),k\in\mathbb{N}_{0}, concludes the proof.
Corollary 9 Let x>0x>0. If fD(+)f\in D\left(\mathbb{R}_{+}\right)has at most polynomial growth and is infinitely differentiable at xx, then for any rr\in\mathbb{N}, the complete pointwise asymptotic expansion

(S¯nHf)(r)(x)f(r)(x)+k=1ck(r)(f,x)nk(n)\left(\bar{S}_{n}^{H}f\right)^{(r)}(x)\sim f^{(r)}(x)+\sum_{k=1}^{\infty}\frac{c_{k}^{(r)}(f,x)}{n^{k}}\quad(n\rightarrow\infty)

is valid.

5 Conclusion

Positive linear operators play an important role in constructive approximation and have many applications. In retrospect, the paper brings important achievements in the

Approximation Theory. First of all we refer to the definition of the Appell polynomials of dimension d(d2)d(d\geq 2). Based on them, the integral form in the Durrmeyer sense of the extension of the Szász-Mirakjan-Leviatan type operators leads to a new class of operators whose approximation properties are revealed. Another major achievement of the new approximation process are the asymptotic expansions of this class and its derivatives, all coefficients being explicitly calculated. Voronovskaja-type formulas become immediate consequences of these asymptotic expansions.

References

  1. 1.

    Abel, U., Agratini, O., Ivan, M.: Asymptotic properties of Kantorovich-type Szász-Mirakjan operators of higher order. Math. Found. Comput. 6(3), 290-302 (2023)

  2. 2.

    Abel, U., Agratini, O.: Păltănea, R (2018) A complete asymptotic expansion for the quasi-interpolants of Gauß-Weiertraß operators. Mediterr. J. Math. 15, 156 (2018)

  3. 3.

    Agrawal, P.N., Singh, S.: Stancu variant of Jakimovski-Leviatan-Durrmeyer operators involving Brenke type polynomials. Math. Found. Comput. 7(1), 1-19 (2024)

  4. 4.

    Altomare, F., Campiti, M.: Korovkin-type Approximation Theory and its Applications, Walter de Gruyter Studies in Mathematics, vol. 17. de Gruyter & Co., Berlin (1994)

  5. 5.

    Altomare, F.: Korovkin-type theorems and approximation by positive linear operators. Surv. Approx. Theory 5, 92-164 (2010)

  6. 6.

    Ansari, K.J., Mursaleen, M., Rahman, S.: Approximation by Jakimovski-Leviatan operators of Durrmeyer type involving multiple Appell polynomials. RACSAM 113, 1007-1024 (2019)

  7. 7.

    Appell, P.E.: Ann. Sci. École Norm. Sup., 3e Série. Sur une classe de polynômes 9, 119-144 (1880)

  8. 8.

    Braha, N.L., Kadak, U.: Approximation properties of the generalized Szasz operators by multiple Appell polynomials via power summability method. Math. Methods Appl. Sci. 43(5), 2337-2356 (2020)

  9. 9.

    Gupta, P., Acu, A.M., Agrawal, P.N.: Jakimovski-Leviatan operators of Kantorovich type involving multiple Appell polynomials. Georgian Math. J. 28(1), 73-82 (2021)

  10. 10.

    Gupta, P., Agrawal, P.N.: Quantitative Voronovskaja and Grüss Voronovskaja-Type Theorems for Operators of Kantorovich Type Involving Multiple Appell Polynomials, Iran. J. Sci. Technol. Trans. Sci. 43, 1679-1687 (2019). https://doi.org/10.1007/s40995-018-0613-x

  11. 11.

    Jakimovski, A., Leviatan, D.: Generalized Szász operators for the approximation in the infinite interval. Mathematica (Cluj) 11(34), 97-103 (1969)

  12. 12.

    Lee, D.W.: On multiple Appell polynomials. Proc. Amer. Math. Soc. 139(6), 2133-2141 (2011)

  13. 13.

    Mazhar, S.M., Totik, V.: Approximation by modified Szász operators. Acta Sci. Math. 49, 257-269 (1985)

  14. 14.

    Mirakjan, G.M.: Approximation of continuous functions with the aid of polynomials (Russian), C.R. (Doklady). Acad. Sci. URSS (N.S.) 31, 201-205 (1941)

  15. 15.

    Nasiruzzaman, M.: Convergence on sequences of Szász-Jakimovski-Leviatan type operators and related results. Math. Found. Comput. 6(2), 218-230 (2023)

  16. 16.

    Nasiruzzaman, M., Aljohani, A.F.: Approximation by Szász-Jakimovski-Leviatan-type operators via aid of Appell polynomials, J. Funct. Spaces, Vol. 2020, ID 9657489, 11 pages

  17. 17.

    Shisha, O., Mond, B.: The degree of convergence of linear positive operators. Proc. Nat. Acad. Sci. USA 60, 1196-1200 (1968)

  18. 18.

    Sikkema, P.C.: On some linear positive operators. Indag. Math. 32, 327-337 (1970)

  19. 19.

    Swarup, C., Gupta, P., Dubey, R., Mishra, V.N.: Generalization of Szász-Mirakjan-Kantorovich operators using multiple Appell polynomials. J. Inequal. Appl. 2020, 156 (2020). https://doi.org/10.1186/ s13660-020-02423-8

  20. 20.

    Szász, O.: Generalization of S. Bernstein’s polynomials to the infinite interval. J. Res. Nat. Bur. Standards 45(3), 239-245 (1950)

  21. 21.

    Varma, S.: On a generalization of Szász operators by multiple Appell polynomials. Stud. Univ. BabeşBolyai Math. 58(3), 361-369 (2013)

  22. 22.

    Wood, B.: Generalized Szász operators for the approximation in the complex domain. SIAM J. Appl. Math. 17(4), 790-801 (1969)

2025

Related Posts