The equivalence between the T-stabilities of Mann and Ishikawa iterations

Abstract

We show that T-stability of Mann and Ishikawa iterations are equivalent.

    Authors

    B.E. Rhoades

    S.M. Soltuz
    (Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

    Keywords

    Mann iteration; Ishikawa iteration; T-stability

    References

    See the expanding block below.

    Paper coordinates

    B.E. Rhoades, Ş.M . Şoltuz, The equivalence between T-stabilities of Mann and Ishikawa iterations, J. Math. Anal. Appl. 318 (2006), 472-475.
    doi: 10.1016/j.jmaa.2005.05.066

    PDF

    About this paper

    Publisher Name

    Elsevier

    Print ISSN

    0022-247X

    Online ISSN
    Google Scholar Profile

    google scholar

    soon

    Paper (preprint) in HTML form

    1-s2.0-S0022247X05005202-main

    The equivalence between the T T TTT-stabilities of Mann and Ishikawa iterations

    B.E. Rhoades a ^("a "){ }^{\text {a }}, Ştefan M. Şoltuz b, b,  ^("b, "){ }^{\text {b, }}b,  t a a ^(a){ }^{\mathrm{a}}a Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA b b ^(b){ }^{\mathrm{b}}b "T. Popoviciu" Institute of Numerical Analysis, PO Box 68-1, 400110 Cluj-Napoca, Romania

    Received 16 January 2005
    Available online 11 July 2005
    Submitted by G. Jungck

    Abstract

    We show that T T TTT-stability of Mann and Ishikawa iterations are equivalent. © 2005 Elsevier Inc. All rights reserved.

    Keywords: Mann iteration; Ishikawa iteration; T T TTT-stability

    1. Introduction

    Let X X XXX be a normed space and T T TTT a selfmap of X X XXX. Let x 0 x 0 x_(0)x_{0}x0 be a point of X X XXX, and assume that x n + 1 = f ( T , x n ) x n + 1 = f T , x n x_(n+1)=f(T,x_(n))x_{n+1}=f\left(T, x_{n}\right)xn+1=f(T,xn) is an iteration procedure, involving T T TTT, which yields a sequence { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} of point from X X XXX. Suppose { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} converges to a fixed point x x x^(**)x^{*}x of T T TTT. Let { ξ n } ξ n {xi_(n)}\left\{\xi_{n}\right\}{ξn} be an arbitrary sequence in X X XXX, and set ϵ n = ξ n + 1 f ( T , ξ n ) ϵ n = ξ n + 1 f T , ξ n epsilon_(n)=||xi_(n+1)-f(T,xi_(n))||\epsilon_{n}=\left\|\xi_{n+1}-f\left(T, \xi_{n}\right)\right\|ϵn=ξn+1f(T,ξn) for all n N n N n inNn \in \mathbb{N}nN.
    Definition 1.1. [2] If ( ( lim n ϵ n = 0 ) ( lim n ξ n = p ) ) lim n ϵ n = 0 lim n ξ n = p ((lim_(n rarr oo)epsilon_(n)=0)=>(lim_(n rarr oo)xi_(n)=p))\left(\left(\lim _{n \rightarrow \infty} \epsilon_{n}=0\right) \Rightarrow\left(\lim _{n \rightarrow \infty} \xi_{n}=p\right)\right)((limnϵn=0)(limnξn=p)), then the iteration procedure x n + 1 = f ( T , x n ) x n + 1 = f T , x n x_(n+1)=f(T,x_(n))x_{n+1}=f\left(T, x_{n}\right)xn+1=f(T,xn) is said to be T T TTT-stable with respect to T T TTT.
    Remark 1.2. [2] In practice, such a sequence { ξ n } ξ n {xi_(n)}\left\{\xi_{n}\right\}{ξn} could arise in the following way. Let x 0 x 0 x_(0)x_{0}x0 be a point in X X XXX. Set x n + 1 = f ( T , x n ) x n + 1 = f T , x n x_(n+1)=f(T,x_(n))x_{n+1}=f\left(T, x_{n}\right)xn+1=f(T,xn). Let ξ 0 = x 0 ξ 0 = x 0 xi_(0)=x_(0)\xi_{0}=x_{0}ξ0=x0. Now x 1 = f ( T , x 0 ) x 1 = f T , x 0 x_(1)=f(T,x_(0))x_{1}=f\left(T, x_{0}\right)x1=f(T,x0). Because of rounding or discretization in the function T T TTT, a new value ξ 1 ξ 1 xi_(1)\xi_{1}ξ1 approximately equal to x 1 x 1 x_(1)x_{1}x1 might be obtained instead of the true value of f ( T , x 0 ) f T , x 0 f(T,x_(0))f\left(T, x_{0}\right)f(T,x0). Then to approximate ξ 2 ξ 2 xi_(2)\xi_{2}ξ2, the value f ( T , ξ 1 ) f T , ξ 1 f(T,xi_(1))f\left(T, \xi_{1}\right)f(T,ξ1) is computed to yields ξ 2 ξ 2 xi_(2)\xi_{2}ξ2, an approximation of f ( T , ξ 1 ) f T , ξ 1 f(T,xi_(1))f\left(T, \xi_{1}\right)f(T,ξ1). This computation is continued to obtain { ξ n } ξ n {xi_(n)}\left\{\xi_{n}\right\}{ξn} an approximate sequence of { x n } x n {x_(n)}\left\{x_{n}\right\}{xn}.
    The two most popular iteration procedures for obtaining fixed points of T T TTT, when the Banach principle fails, are Mann iteration [3], defined by
    (1.1) u n + 1 = ( 1 α n ) u n + α n T u n , (1.1) u n + 1 = 1 α n u n + α n T u n , {:(1.1)u_(n+1)=(1-alpha_(n))u_(n)+alpha_(n)Tu_(n)",":}\begin{equation*} u_{n+1}=\left(1-\alpha_{n}\right) u_{n}+\alpha_{n} T u_{n}, \tag{1.1} \end{equation*}(1.1)un+1=(1αn)un+αnTun,
    and Ishikawa iteration [1], defined by
    x n + 1 = ( 1 α n ) x n + α n T z n (1.2) z n = ( 1 β n ) x n + β n T x n x n + 1 = 1 α n x n + α n T z n (1.2) z n = 1 β n x n + β n T x n {:[x_(n+1)=(1-alpha_(n))x_(n)+alpha_(n)Tz_(n)],[(1.2)z_(n)=(1-beta_(n))x_(n)+beta_(n)Tx_(n)]:}\begin{align*} & x_{n+1}=\left(1-\alpha_{n}\right) x_{n}+\alpha_{n} T z_{n} \\ & z_{n}=\left(1-\beta_{n}\right) x_{n}+\beta_{n} T x_{n} \tag{1.2} \end{align*}xn+1=(1αn)xn+αnTzn(1.2)zn=(1βn)xn+βnTxn
    The sequences { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) satisfy
    (1.3) lim n α n = lim n β n = 0 , n = 1 α n = (1.3) lim n α n = lim n β n = 0 , n = 1 α n = {:(1.3)lim_(n rarr oo)alpha_(n)=lim_(n rarr oo)beta_(n)=0","quadsum_(n=1)^(oo)alpha_(n)=oo:}\begin{equation*} \lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=0, \quad \sum_{n=1}^{\infty} \alpha_{n}=\infty \tag{1.3} \end{equation*}(1.3)limnαn=limnβn=0,n=1αn=
    A reasonable conjecture is that the Ishikawa iteration and the corresponding Mann iteration are equivalent for all maps for which either method provides convergence to a fixed point. In an attempt to verify this conjecture the authors, in a series of papers [4-9] have shown the equivalence for several classes of maps. We shall prove the equivalence between T T TTT-stabilities of (1.1) and (1.2). Throughout this paper, we shall assume that both Mann and Ishikawa iterations converge to a fixed point of T T TTT.

    2. The equivalence between T T T\boldsymbol{T}T-stabilities

    Let { x n } x n {x_(n)}\left\{x_{n}\right\}{xn} be the Ishikawa iteration and { u n } u n {u_(n)}\left\{u_{n}\right\}{un} be the Mann iteration. Let { s n } , { p n } X s n , p n X {s_(n)},{p_(n)}sub X\left\{s_{n}\right\},\left\{p_{n}\right\} \subset X{sn},{pn}X be such that s 0 = p 0 s 0 = p 0 s_(0)=p_(0)s_{0}=p_{0}s0=p0, and let ( α n ) n ( 0 , 1 ) , ( β n ) n [ 0 , 1 ) α n n ( 0 , 1 ) , β n n [ 0 , 1 ) (alpha_(n))_(n)sub(0,1),(beta_(n))_(n)sub[0,1)\left(\alpha_{n}\right)_{n} \subset(0,1),\left(\beta_{n}\right)_{n} \subset[0,1)(αn)n(0,1),(βn)n[0,1) satisfy (1.3) and
    (2.1) y n = ( 1 β n ) s n + β n T s n (2.1) y n = 1 β n s n + β n T s n {:(2.1)y_(n)=(1-beta_(n))s_(n)+beta_(n)Ts_(n):}\begin{equation*} y_{n}=\left(1-\beta_{n}\right) s_{n}+\beta_{n} T s_{n} \tag{2.1} \end{equation*}(2.1)yn=(1βn)sn+βnTsn
    We consider the following nonnegative sequences, for all n N n N n inNn \in \mathbb{N}nN :
    (2.2) ε n := s n + 1 ( 1 α n ) s n α n T y n (2.3) δ n := p n + 1 ( 1 α n ) p n α n T p n . (2.2) ε n := s n + 1 1 α n s n α n T y n (2.3) δ n := p n + 1 1 α n p n α n T p n . {:[(2.2)epsi_(n):=||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ty_(n)||],[(2.3)delta_(n):=||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Tp_(n)||.]:}\begin{align*} & \varepsilon_{n}:=\left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T y_{n}\right\| \tag{2.2}\\ & \delta_{n}:=\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T p_{n}\right\| . \tag{2.3} \end{align*}(2.2)εn:=sn+1(1αn)snαnTyn(2.3)δn:=pn+1(1αn)pnαnTpn.
    Definition 2.1. Definition 1.1 for (2.2) and (2.3) gives:
    (i) If lim n ε n = 0 lim n ε n = 0 lim_(n rarr oo)epsi_(n)=0\lim _{n \rightarrow \infty} \varepsilon_{n}=0limnεn=0 implies that lim n s n = x lim n s n = x lim_(n rarr oo)s_(n)=x^(**)\lim _{n \rightarrow \infty} s_{n}=x^{*}limnsn=x, then the Ishikawa iteration (1.2), is said to be T T TTT-stable.
    (ii) If lim n δ n = 0 lim n δ n = 0 lim_(n rarr oo)delta_(n)=0\lim _{n \rightarrow \infty} \delta_{n}=0limnδn=0 implies that lim n p n = x lim n p n = x lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty} p_{n}=x^{*}limnpn=x, then the Mann iteration (1.1) is said to be T T TTT-stable.
    Remark 2.2. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map. The following are equivalent:
    (i) for all { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) satisfying (1.3), the Ishikawa iteration is T T TTT-stable,
    (I) for all { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) satisfying (1.3), { s n } X s n X AA{s_(n)}sub X\forall\left\{s_{n}\right\} \subset X{sn}X :
    (2.4) lim n ε n = lim n s n + 1 ( 1 α n ) s n α n T y n = 0 lim n s n = x (2.4) lim n ε n = lim n s n + 1 1 α n s n α n T y n = 0 lim n s n = x {:(2.4)lim_(n rarr oo)epsi_(n)=lim_(n rarr oo)||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ty_(n)||=0=>lim_(n rarr oo)s_(n)=x^(**):}\begin{equation*} \lim _{n \rightarrow \infty} \varepsilon_{n}=\lim _{n \rightarrow \infty}\left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T y_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty} s_{n}=x^{*} \tag{2.4} \end{equation*}(2.4)limnεn=limnsn+1(1αn)snαnTyn=0limnsn=x
    Remark 2.3. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map. The following are equivalent:
    (ii) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1) satisfying (1.3), the Mann iteration is T T TTT-stable,
    (II) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1) satisfying (1.3), { p n } X p n X AA{p_(n)}sub X\forall\left\{p_{n}\right\} \subset X{pn}X :
    (2.5) lim n δ n = lim n p n + 1 ( 1 α n ) p n α n T p n = 0 lim n p n = x (2.5) lim n δ n = lim n p n + 1 1 α n p n α n T p n = 0 lim n p n = x {:(2.5)lim_(n rarr oo)delta_(n)=lim_(n rarr oo)||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Tp_(n)||=0quad=>quadlim_(n rarr oo)p_(n)=x^(**):}\begin{equation*} \lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty}\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T p_{n}\right\|=0 \quad \Rightarrow \quad \lim _{n \rightarrow \infty} p_{n}=x^{*} \tag{2.5} \end{equation*}(2.5)limnδn=limnpn+1(1αn)pnαnTpn=0limnpn=x
    Theorem 2.4. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map. Then the following are equivalent:
    (i) for all { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) satisfying (1.3), the Ishikawa iteration (1.2) is T T TTT-stable,
    (ii) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1), satisfying (1.3), the Mann iteration (1.1) is T T TTT-stable.
    Proof. Let
    M := max { sup n N { T ( y n ) } , sup n N { T ( s n ) } , sup n N { T ( p n ) } } M := max sup n N T y n , sup n N T s n , sup n N T p n M:=max{s u p_(n inN){||T(y_(n))||},s u p_(n inN){||T(s_(n))||},s u p_(n inN){||T(p_(n))||}}M:=\max \left\{\sup _{n \in \mathbb{N}}\left\{\left\|T\left(y_{n}\right)\right\|\right\}, \sup _{n \in \mathbb{N}}\left\{\left\|T\left(s_{n}\right)\right\|\right\}, \sup _{n \in \mathbb{N}}\left\{\left\|T\left(p_{n}\right)\right\|\right\}\right\}M:=max{supnN{T(yn)},supnN{T(sn)},supnN{T(pn)}}
    Since the Mann and Ishikawa iterations converge, M < M < M < ooM<\inftyM<. Remarks 2.2 and 2.3 assure that (i) ⇔ (ii) is equivalent to (I) ⇔ (II). We shall prove that (I) ⇒ (II). In (I) and (2.4) set s n := p n s n := p n s_(n):=p_(n)s_{n}:=p_{n}sn:=pn to obtain
    p n + 1 ( 1 α n ) p n α n T p n p n + 1 ( 1 α n ) p n α n T y n + α n T y n α n T p n p n + 1 ( 1 α n ) p n α n T y n + α n ( T y n + T p n ) (2.6) p n + 1 ( 1 α n ) p n α n T y n + 2 α n M 0 as n . p n + 1 1 α n p n α n T p n p n + 1 1 α n p n α n T y n + α n T y n α n T p n p n + 1 1 α n p n α n T y n + α n T y n + T p n (2.6) p n + 1 1 α n p n α n T y n + 2 α n M 0  as  n . {:[||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Tp_(n)||],[quad <= ||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||+||alpha_(n)Ty_(n)-alpha_(n)Tp_(n)||],[quad <= ||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||+alpha_(n)(||Ty_(n)||+||Tp_(n)||)],[(2.6)quad <= ||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||+2alpha_(n)M rarr0quad" as "n rarr oo.]:}\begin{align*} & \left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T p_{n}\right\| \\ & \quad \leqslant\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|+\left\|\alpha_{n} T y_{n}-\alpha_{n} T p_{n}\right\| \\ & \quad \leqslant\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|+\alpha_{n}\left(\left\|T y_{n}\right\|+\left\|T p_{n}\right\|\right) \\ & \quad \leqslant\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|+2 \alpha_{n} M \rightarrow 0 \quad \text { as } n \rightarrow \infty . \tag{2.6} \end{align*}pn+1(1αn)pnαnTpnpn+1(1αn)pnαnTyn+αnTynαnTpnpn+1(1αn)pnαnTyn+αn(Tyn+Tpn)(2.6)pn+1(1αn)pnαnTyn+2αnM0 as n.
    Condition (I) assures that lim n p n + 1 ( 1 α n ) p n α n T y n = 0 lim n p n = x lim n p n + 1 1 α n p n α n T y n = 0 lim n p n = x lim_(n rarr oo)||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Ty_(n)||=0=>lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty}\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T y_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty} p_{n}=x^{*}limnpn+1(1αn)pnαnTyn=0limnpn=x. Thus, for a { p n } p n {p_(n)}\left\{p_{n}\right\}{pn} satisfying lim n p n + 1 ( 1 α n ) p n α n T p n = 0 lim n p n + 1 1 α n p n α n T p n = 0 lim_(n rarr oo)||p_(n+1)-(1-alpha_(n))p_(n)-alpha_(n)Tp_(n)||=0\lim _{n \rightarrow \infty}\left\|p_{n+1}-\left(1-\alpha_{n}\right) p_{n}-\alpha_{n} T p_{n}\right\|=0limnpn+1(1αn)pnαnTpn=0, we have shown that lim n p n = x lim n p n = x lim_(n rarr oo)p_(n)=x^(**)\lim _{n \rightarrow \infty} p_{n}=x^{*}limnpn=x.
    Conversely, we prove (II) =>\Rightarrow (I). In (II) and (2.5) set p n := s n p n := s n p_(n):=s_(n)p_{n}:=s_{n}pn:=sn to obtain
    s n + 1 ( 1 α n ) s n α n T y n s n + 1 ( 1 α n ) s n α n T s n + α n T y n α n T s n (2.7) s n + 1 ( 1 α n ) s n α n T s n + 2 α n M 0 as n s n + 1 1 α n s n α n T y n s n + 1 1 α n s n α n T s n + α n T y n α n T s n (2.7) s n + 1 1 α n s n α n T s n + 2 α n M 0  as  n {:[||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ty_(n)||],[quad <= ||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ts_(n)||+||alpha_(n)Ty_(n)-alpha_(n)Ts_(n)||],[(2.7)quad <= ||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ts_(n)||+2alpha_(n)M rarr0quad" as "n rarr oo]:}\begin{align*} & \left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T y_{n}\right\| \\ & \quad \leqslant\left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T s_{n}\right\|+\left\|\alpha_{n} T y_{n}-\alpha_{n} T s_{n}\right\| \\ & \quad \leqslant\left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T s_{n}\right\|+2 \alpha_{n} M \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.7} \end{align*}sn+1(1αn)snαnTynsn+1(1αn)snαnTsn+αnTynαnTsn(2.7)sn+1(1αn)snαnTsn+2αnM0 as n
    Condition (II) assures that lim n s n + 1 ( 1 α n ) s n α n T s n = 0 lim n s n = x lim n s n + 1 1 α n s n α n T s n = 0 lim n s n = x lim_(n rarr oo)||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ts_(n)||=0=>lim_(n rarr oo)s_(n)=x^(**)\lim _{n \rightarrow \infty}\left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T s_{n}\right\|=0 \Rightarrow \lim _{n \rightarrow \infty} s_{n}=x^{*}limnsn+1(1αn)snαnTsn=0limnsn=x. Thus, for a { s n } s n {s_(n)}\left\{s_{n}\right\}{sn} satisfying lim n s n + 1 ( 1 α n ) s n α n T y n = 0 lim n s n + 1 1 α n s n α n T y n = 0 lim_(n rarr oo)||s_(n+1)-(1-alpha_(n))s_(n)-alpha_(n)Ty_(n)||=0\lim _{n \rightarrow \infty}\left\|s_{n+1}-\left(1-\alpha_{n}\right) s_{n}-\alpha_{n} T y_{n}\right\|=0limnsn+1(1αn)snαnTyn=0, we have shown that lim n s n = x lim n s n = x lim_(n rarr oo)s_(n)=x^(**)\lim _{n \rightarrow \infty} s_{n}=x^{*}limnsn=x.
    Set in (1.1) and (1.2), T := T n T := T n T:=T^(n)T:=T^{n}T:=Tn, to obtain the modified Mann and modified Ishikawa iterations. We suppose that both modified Mann and modified Ishikawa iterations converge to a fixed point of T T TTT. Note that Definition 2.1, Remarks 2.2 and 2.3, and Theorem 2.4 hold in this case too.
    Corollary 2.5. Let X X XXX be a normed space and T : X X T : X X T:X rarr XT: X \rightarrow XT:XX a map. Then the following are equivalent:
    (i) for all { α n } ( 0 , 1 ) , { β n } [ 0 , 1 ) α n ( 0 , 1 ) , β n [ 0 , 1 ) {alpha_(n)}sub(0,1),{beta_(n)}sub[0,1)\left\{\alpha_{n}\right\} \subset(0,1),\left\{\beta_{n}\right\} \subset[0,1){αn}(0,1),{βn}[0,1) satisfying (1.3), the modified Ishikawa iteration is T T TTT-stable,
    (ii) for all { α n } ( 0 , 1 ) α n ( 0 , 1 ) {alpha_(n)}sub(0,1)\left\{\alpha_{n}\right\} \subset(0,1){αn}(0,1), satisfying (1.3), the modified Mann iteration is T T TTT-stable.

    References

    [1] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147-150.
    [2] A.M. Harder, T. Hicks, Stability results for fixed point iteration procedures, Math. Japonica 33 (1988) 693706.
    [3] W.R. Mann, Mean value in iteration, Proc. Amer. Math. Soc. 4 (1953) 506-510.
    [4] B.E. Rhoades, Ş.M. Şoltuz, On the equivalence of Mann and Ishikawa iteration methods, Internat. J. Math. Math. Sci. 2003 (2003) 451-459.
    [5] B.E. Rhoades, Ş.M. Şoltuz, The equivalence of Mann iteration and Ishikawa iteration for non-Lipschitzian operators, Internat. J. Math. Math. Sci. 2003 (2003) 2645-2652.
    [6] B.E. Rhoades, Ş.M. Şoltuz, The equivalence of Mann and Ishikawa iteration for ψ ψ psi\psiψ-uniformly pseudocontractive or ψ ψ psi\psiψ-uniformly accretive maps, Internat. J. Math. Math. Sci. 46 (2004) 2443-2452.
    [7] B.E. Rhoades, Ş.M. Şoltuz, The equivalence of Mann and Ishikawa iteration for a Lipschitzian psi-uniformly pseudocontractive and psi-uniformly accretive maps, Tamkang J. Math. 35 (2004) 235-245.
    [8] B.E. Rhoades, Ş.M. Şoltuz, The equivalence between the convergences of Ishikawa and Mann iterations for asymptotically nonexpansive in the intermediate sense and strongly successively pseudocontractive maps, J. Math. Anal. Appl. 289 (2004) 266-278.
    [9] B.E. Rhoades, Ş.M. Şoltuz, The equivalence between Mann-Ishikawa iteration and the multistep iteration, Nonlinear Anal. 58 (2004) 219-228.

      • Corresponding author.
      E-mail addresses: rhoades@indiana.edu (B.E. Rhoades), soltuzul@yahoo.com, stefanmsoltuz@yahoo.com (Ş.M. Şoltuz).
    2006

    Related Posts