Abstract
This survey paper contains the basic ideas of windowed Fourier transform, wavelet transform, wavelet bases and multiresolution analysis, providing important information that introduces the reader at the forefront of current research.
Authors
Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
Fourier transform; wavelet bases; multiresolution analysis; scaling function; time-frequency signal analysis
Paper coordinates
O. Agratini, The mysterious wavelets world, Poceedings of the 5th Romanian-German Seminar on Mathematical Analysis and Approximation Theory, Sibiu, June 2002, pp.9-35
About this paper
Journal
Mathematical Analysis and Approximation Theory
Publisher Name
DOI
Print ISSN
0973-5119
Online ISSN
google scholar link
[1] Abbate, A., De Cusatis, C.M., Das, P.K., Wavelets and Subbands, Fundamentals and Applications, Boston, Birkhauser, 2002.
[2] Bultheel, A., Learning to swin in a sea of wavelets, Bulletin of the Belgian Mathematical Society-Simon Stevin, vol.2 (1995), no.1, 1-45.
[3] Chui, C.K., An Introduction to Wavelets, Academic Press New York, 1992.
[4] Daubechies, I., Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
[5] Debnath, L., Wavelet Transform and Their Applications, Birkhauser, Boston Basel Berlin, 2002.
[6] Gasquet, C., Witomski, P., Analyse de Fourier et applications, Masson, Paris, 1990.
[7] Meyer, Y., Wavelets – Algorithms and Applications, SIAM, Philadelphia, PA, 1993.
[8] Odgen, R.T., Essential Wavelets for Statistical Applicaitons and Data Analysis, Boston, Birkhauser, 1997.
[9] Soardi, P.M., Apprunti sulle Ondine, Quaderni dell’Unione Matematica Italiana, 44, Pitagora Editrice, Bologna, 1998.
[10] Stănășila, O., Analiza matematică a semnalelor și undinelor, Matrix Rom. București, 1997.