The nonlinear heat equation via fixed point principles

Abstract

Starting with the existence and uniqueness result of J.L.Lions for the non-homogenous heat equation with the source term in \(H^{-1}\left(\Omega \right) \), we ppresent existence results for the nonlinear perturbed heat equation via Banach, Schauder and Leray-Schauder principles.

Authors

Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

Parabolic equation; Nonlinear operator; Sobolev space.

Paper coordinates

R. Precup, The nonlinear heat equation via fixed point principles, Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity, 4 (2006), pp. 3-19.

PDF

About this paper

Journal

Annals of the Tiberiu Popoviciu Seminar of Functional Equations, Approximation and Convexity

Publisher Name
DOI
Print ISSN

1584-4536

Online ISSN

google scholar link

[1] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
[2] H. Brezis, Analyse fonctionnelle. Th´eorie et applications, Masson, Paris, 1983.
[3] J.L. Lions, Quelques m´ethodes de resolution des probl`emes aux limites non-lineaires, Dunod, Gauthier–Villars, Paris, 1969.
[4] J.L. Lions and E. Magenes, Probl`emes aux limites non-homogenes et applications, Dunod, Paris, 1968.
[5] D. O’Regan and R. Precup, Theorems of Leray–Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001 (Taylor and Francis, London, 2002).
[6] R. Precup, Partial Differential Equations (Romanian), Transilvania Press, Cluj, 1997.
[7] R. Precup, Methods in Nonlinear Integral Equations, Kluwer, Dordrecht–Boston–London, 2002.
[8] M. Taylor, Partial Differential Equations I-III, Springer, Berlin, 1996.
[9] R. Temam, Infinite-Dimentional Dynamical Systems in Mechanics and Physics, Springer, Berlin, 1988.

2006

Related Posts