[1] J. Appell, Measures of noncompactness, condensing operators and fixed points: an application-oriented survey, Fixed Point Theory 6(2) (2005), 157–229. [Google Scholar]
[2] O. Bolojan-Nica, G. Infante and R. Precup, Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 94 (2014), 231–242. doi: 10.1016/j.na.2013.08.019 [Crossref], [Web of Science ®], [Google Scholar]
[3] R. Bunoiu and R. Precup, Vectorial approach to coupled nonlinear Schrödinger systems under nonlocal Cauchy conditions, Appl. Anal. 95(4) (2016), 731–747, doi: 10.1080/00036811.2015.1028921 [Taylor & Francis Online], [Web of Science ®] [Google Scholar]
[4] T. Cardinali, D. O’Regan and P. Rubbioni, Mönch sets and fixed point theorems for multimaps in locally convex topological vector spaces, Fixed Point Theory 18(1) (2017), 147–154. doi: 10.24193/fpt-ro.2017.1.12 [Crossref], [Web of Science [Google Scholar]
[5] T. Cardinali, R. Precup and P. Rubbioni, A unified existence theory for evolution equations and systems under nonlocal conditions, J. Math. Anal. Appl. 432 (2015), 1039–1057. doi: 10.1016/j.jmaa.2015.07.019 [Crossref], [Web of Science ®],[Google Scholar]
[6] T. Cardinali and P. Rubbioni, Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness, J. Math. Anal. Appl. 405 (2013), 409–415. doi: 10.1016/j.jmaa.2013.03.045 [Crossref], [Web of Science ®], [Google Scholar]
[7] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. [Crossref], [Google Scholar]
[8] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. [Crossref], [Google Scholar]
[9] H.P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351–1371. doi: 10.1016/0362-546X(83)90006-8 [Crossref], [Web of Science ®],[Google Scholar]
[10] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985–999. doi: 10.1016/0362-546X(80)90010-3 [Crossref], [Google Scholar]
[11] D. O’Regan, Fixed point theory of Mönch type for weakly sequentially upper semi-continuous maps, Bull. Austral. Math. Soc. 61 (2000), 439–449. doi: 10.1017/S0004972700022450 [Crossref], [Web of Science ®], [Google Scholar]
[12] D. O’Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001. [Google Scholar]
[13] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134. (Russian) [Google Scholar]
[14] A. Petrusel and G. Petrusel, A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory, J. Fixed Point Theory Appl. (2016). doi:10.1007/s11784-016-0332-x [Web of Science ®], [Google Scholar]
[15] R. Precup, The role of convergent to zero matrices in the study of semiliniar operator systems, Math. Comput. Modelling 49 (2009), 703–708. doi: 10.1016/j.mcm.2008.04.006 [Crossref], [Web of Science ®], [Google Scholar]
[16] R. Precup and I.A. Rus, Some fixed point theorems in terms of two measures of noncompactness, Mathematica 56(2) (79) (2014), 158–165. [Google Scholar]
[17] I.A. Rus and M.-A. Şerban, Some fixed point theorems on cartesian product in terms of vectorial measures of noncompactness, Stud. Univ. Babeş-Bolyai Math. 59 (2014), 103–111. [Google Scholar]
[18] E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems, Springer, Berlin, 1986. [Crossref], [Google Scholar]