Abstract
In this paper a fixed point theory is established for operators defined on Cartesian product spaces. Two abstract approaches are presented in terms of closure operators and of general functionals called measures of deviations from zero resembling the measures of noncompactness. In particular, we give vectorial versions to Mönch’s fixed point theorems. An application is included to illustrate the theory.
Authors
Tiziana Cardinali
Department of Mathematics and Computer Science, University of Perugia, Italy
Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania
Paola Rubbioni
Department of Mathematics and Computer Science, University of Perugia, Italy
Keywords
Fixed point; measure of noncompactness; vector-valued operator; positive matrix.
Paper coordinates
T. Cardinali, R. Precup, P. Rubbioni, Two abstract approaches in vectorial fixed point theory, Quaestiones Mathematicae 41 (2018), no. 2, 173-188, https://doi.org/10.2989/16073606.2017.1376002
??
About this paper
Journal
Questiones Mathematicae
Publisher Name
Taylor and Francis Ltd.
Print ISSN
16073606
Online ISSN
1727933X
google scholar link
[1] J. Appell, Measures of noncompactness, condensing operators and fixed points: an application-oriented survey, Fixed Point Theory 6(2) (2005), 157–229. [Google Scholar]
[2] O. Bolojan-Nica, G. Infante and R. Precup, Existence results for systems with coupled nonlocal initial conditions, Nonlinear Anal. 94 (2014), 231–242. doi: 10.1016/j.na.2013.08.019 [Crossref], [Web of Science ®], [Google Scholar]
[3] R. Bunoiu and R. Precup, Vectorial approach to coupled nonlinear Schrödinger systems under nonlocal Cauchy conditions, Appl. Anal. 95(4) (2016), 731–747, doi: 10.1080/00036811.2015.1028921 [Taylor & Francis Online], [Web of Science ®] [Google Scholar]
[4] T. Cardinali, D. O’Regan and P. Rubbioni, Mönch sets and fixed point theorems for multimaps in locally convex topological vector spaces, Fixed Point Theory 18(1) (2017), 147–154. doi: 10.24193/fpt-ro.2017.1.12 [Crossref], [Web of Science [Google Scholar]
[5] T. Cardinali, R. Precup and P. Rubbioni, A unified existence theory for evolution equations and systems under nonlocal conditions, J. Math. Anal. Appl. 432 (2015), 1039–1057. doi: 10.1016/j.jmaa.2015.07.019 [Crossref], [Web of Science ®],[Google Scholar]
[6] T. Cardinali and P. Rubbioni, Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness, J. Math. Anal. Appl. 405 (2013), 409–415. doi: 10.1016/j.jmaa.2013.03.045 [Crossref], [Web of Science ®], [Google Scholar]
[7] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985. [Crossref], [Google Scholar]
[8] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, 2003. [Crossref], [Google Scholar]
[9] H.P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351–1371. doi: 10.1016/0362-546X(83)90006-8 [Crossref], [Web of Science ®],[Google Scholar]
[10] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), 985–999. doi: 10.1016/0362-546X(80)90010-3 [Crossref], [Google Scholar]
[11] D. O’Regan, Fixed point theory of Mönch type for weakly sequentially upper semi-continuous maps, Bull. Austral. Math. Soc. 61 (2000), 439–449. doi: 10.1017/S0004972700022450 [Crossref], [Web of Science ®], [Google Scholar]
[12] D. O’Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon and Breach, Amsterdam, 2001. [Google Scholar]
[13] A.I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115–134. (Russian) [Google Scholar]
[14] A. Petrusel and G. Petrusel, A study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theory, J. Fixed Point Theory Appl. (2016). doi:10.1007/s11784-016-0332-x [Web of Science ®], [Google Scholar]
[15] R. Precup, The role of convergent to zero matrices in the study of semiliniar operator systems, Math. Comput. Modelling 49 (2009), 703–708. doi: 10.1016/j.mcm.2008.04.006 [Crossref], [Web of Science ®], [Google Scholar]
[16] R. Precup and I.A. Rus, Some fixed point theorems in terms of two measures of noncompactness, Mathematica 56(2) (79) (2014), 158–165. [Google Scholar]
[17] I.A. Rus and M.-A. Şerban, Some fixed point theorems on cartesian product in terms of vectorial measures of noncompactness, Stud. Univ. Babeş-Bolyai Math. 59 (2014), 103–111. [Google Scholar]
[18] E. Zeidler, Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems, Springer, Berlin, 1986. [Crossref], [Google Scholar]