Two abstract approaches in vectorial fixed point theory


In this paper a fixed point theory is established for operators defined on Cartesian product spaces. Two abstract approaches are presented in terms of closure operators and of general functionals called measures of deviations from zero resembling the measures of noncompactness. In particular, we give vectorial versions to Mönch’s fixed point theorems. An application is included to illustrate the theory.


Tiziana Cardinali
Department of Mathematics and Computer Science, University of Perugia, Italy

Radu Precup
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Paola Rubbioni
Department of Mathematics and Computer Science, University of Perugia, Italy


Fixed point; measure of noncompactness; vector-valued operator; positive matrix.

Paper coordinates

T. Cardinali, R. Precup, P. Rubbioni, Two abstract approaches in vectorial fixed point theory, Quaestiones Mathematicae 41 (2018), no. 2, 173-188,



About this paper


Questiones Mathematicae

Publisher Name

Taylor and Francis Ltd.

Print ISSN


Online ISSN


google scholar link

[1] J. AppellMeasures of noncompactness, condensing operators and fixed points: an application-oriented surveyFixed Point Theory 6(2) (2005), 157229[Google Scholar]
O. Bolojan-NicaG. Infante and R. PrecupExistence results for systems with coupled nonlocal initial conditionsNonlinear Anal. 94 (2014), 231242. doi: 10.1016/ [Crossref][Web of Science ®][Google Scholar]
R. Bunoiu and R. PrecupVectorial approach to coupled nonlinear Schrödinger systems under nonlocal Cauchy conditionsAppl. Anal. 95(4) (2016), 731747, doi: 10.1080/00036811.2015.1028921 [Taylor & Francis Online][Web of Science ®] [Google Scholar]
T. CardinaliD. O’Regan and P. RubbioniMönch sets and fixed point theorems for multimaps in locally convex topological vector spacesFixed Point Theory 18(1) (2017), 147154. doi: 10.24193/fpt-ro.2017.1.12 [Crossref][Web of Science [Google Scholar]
T. CardinaliR. Precup and P. RubbioniA unified existence theory for evolution equations and systems under nonlocal conditionsJ. Math. Anal. Appl. 432 (2015), 10391057. doi: 10.1016/j.jmaa.2015.07.019 [Crossref][Web of Science ®],[Google Scholar]
T. Cardinali and P. RubbioniMultivalued fixed point theorems in terms of weak topology and measure of weak noncompactnessJ. Math. Anal. Appl. 405 (2013), 409415. doi: 10.1016/j.jmaa.2013.03.045 [Crossref][Web of Science ®][Google Scholar]
K. DeimlingNonlinear Functional AnalysisSpringerBerlin1985[Crossref][Google Scholar]
A. Granas and J. DugundjiFixed Point TheorySpringerNew York2003[Crossref][Google Scholar]
H.P. HeinzOn the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functionsNonlinear Anal. 7 (1983), 13511371. doi: 10.1016/0362-546X(83)90006-8 [Crossref][Web of Science ®],[Google Scholar]
H. MönchBoundary value problems for nonlinear ordinary differential equations of second order in Banach spacesNonlinear Anal. 4 (1980), 985999. doi: 10.1016/0362-546X(80)90010-3 [Crossref][Google Scholar]
D. O’ReganFixed point theory of Mönch type for weakly sequentially upper semi-continuous mapsBull. Austral. Math. Soc. 61 (2000), 439449. doi: 10.1017/S0004972700022450 [Crossref][Web of Science ®][Google Scholar]
D. O’Regan and R. PrecupTheorems of Leray-Schauder Type and ApplicationsGordon and BreachAmsterdam2001[Google Scholar]
A.I. PerovOn the Cauchy problem for a system of ordinary differential equationsPviblizhen. Met. Reshen. Differ. Uvavn. 2 (1964), 115134. (Russian) [Google Scholar]
A. Petrusel and G. PetruselA study of a general system of operator equations in b-metric spaces via the vector approach in fixed point theoryJ. Fixed Point Theory Appl. (2016). doi:10.1007/s11784-016-0332-x [Web of Science ®][Google Scholar]
R. PrecupThe role of convergent to zero matrices in the study of semiliniar operator systemsMath. Comput. Modelling 49 (2009), 703708. doi: 10.1016/j.mcm.2008.04.006 [Crossref][Web of Science ®][Google Scholar]
R. Precup and I.A. RusSome fixed point theorems in terms of two measures of noncompactnessMathematica 56(2) (79) (2014), 158165[Google Scholar]
I.A. Rus and M.-A. ŞerbanSome fixed point theorems on cartesian product in terms of vectorial measures of noncompactnessStud. Univ. Babeş-Bolyai Math. 59 (2014), 103111[Google Scholar]
E. ZeidlerNonlinear Functional Analysis and Its Applications I: Fixed Point TheoremsSpringerBerlin1986[Crossref][Google Scholar]


Related Posts