## Abstract

In this work we consider the computational approximation of a unique continuation problem for the Helmholtz equation using a stabilized finite element method. First conditional stability estimates are derived for which, under a convexity assumption on the geometry, the constants grow at most linearly in the wave number. Then these estimates are used to obtain error bounds for the finite element method that are explicit with respect to the wave number. Some numerical illustrations are given.

## Authors

**Erik Burman
**Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

**Mihai Nechita****
**Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

**Lauri Oksanen
**Department of Mathematics, University College London, Gower Street, London, WC1E 6BT, United Kingdom

## Keywords

## Paper coordinates

E. Burman, M. Nechita, L. Oksanen, *Unique continuation for the Helmholtz equation using stabilized finite element methods, *J. Math. Pures Appl., **129 **(2019), pp. 1-22.*
*DOI: 10.1016/j.matpur.2018.10.003

## About this paper

##### Journal

Journal de Mathématiques Pures et Appliquées

##### Publisher Name

Elsevier

##### Print ISSN

0021-7824

##### Online ISSN

## References

## References

*The stability for the Cauchy problem for elliptic equations,*Inverse Problems, 25 (2009), Article 123004

[2] I.M. Babuška, S.A. Sauter, *Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers *SIAM J. Numer. Anal., 34 (6) (1997), pp. 2392-2423

[3] D. Baskin, E.A. Spence, J. Wunsch, *Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, *SIAM J. Math. Anal., 48 (1) (2016), pp. 229-267

[4] L. Bourgeois, J. Dardé, *About stability and regularization of ill-posed elliptic Cauchy problems: the case of Lipschitz domains, *Appl. Anal., 89 (11) (2010), pp. 1745-1768

[5] E. Burman, *Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: elliptic equations, *SIAM J. Sci. Comput., 35 (6) (2013), pp. A2752-A2780

[6] E. Burman, *Error estimates for stabilized finite element methods applied to ill-posed problems, *C. R. Math. Acad. Sci. Paris, 352 (7) (2014), pp. 655-659

[7] E. Burman, *Stabilised finite element methods for ill-posed problems with conditional stability, *Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Lect. Notes Comput. Sci. Eng., vol. 114, Springer (2016), pp. 93-127

[8] E. Burman, P. Hansbo, M.G. Larson, *Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization, *Inverse Problems, 34 (2018), Article 035004

[10] E. Burman, L. Oksanen, *Data assimilation for the heat equation using stabilized finite element methods, *Numer. Math., 139 (3) (2018), pp. 505-528

[11] E. Burman, H. Wu, L. Zhu, *Linear continuous interior penalty finite element method for Helmholtz equation with high wave number: one-dimensional analysis, *Numer. Methods Partial Differ. Equ., 32 (5) (2016), pp. 1378-1410

[12] D. Dos Santos Ferreira, C.E. Kenig, M. Salo, G. Uhlmann, *Limiting Carleman weights and anisotropic inverse problems, *Invent. Math., 178 (1) (2009), pp. 119-171

[13] A. Ern, J.-L. Guermond, *Theory and Practice of Finite Elements, **Appl. Math. Sci., vol. 159, Springer-Verlag, New York (2004)*

[14] F. Hecht, *New development in FreeFem++, *J. Numer. Math., 20 (3–4) (2012), pp. 251-265

*The Analysis of Linear Partial Differential Operators, Vol. III,*Springer-Verlag (1985)

[16] L. Hörmander, *The Analysis of Linear Partial Differential Operators, Vol. IV, *Springer-Verlag (1985)

[17] T. Hrycak, V. Isakov, *Increased stability in the continuation of solutions to the Helmholtz equation, *Inverse Problems, 20 (3) (2004), pp. 697-712

[18] F. Ihlenburg, I. Babuška, *Finite element solution of the Helmholtz equation with high wave number. I. The h-version of the FEM, *Comput. Math. Appl., 30 (9) (1995), pp. 9-37

[19] F. Ihlenburg, I. Babuška, *Finite element solution of the Helmholtz equation with high wave number. II. The h-p version of the FEM, *SIAM J. Numer. Anal., 34 (1) (1997), pp. 315-358

[20] V. Isakov, *Inverse Problems for Partial Differential Equations, *(3rd edition), Appl. Math. Sci., vol. 127, Springer (2017)

[21] F. John, *Continuous dependence on data for solutions of partial differential equations with a prescribed bound, *Comm. Pure Appl. Math., 13 (1960), pp. 551-585

[22] J. Le Rousseau, G. Lebeau, *On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, *ESAIM Control Optim. Calc. Var., 18 (3) (2012), pp. 712-747

*A Lipschitz stable reconstruction formula for the inverse problem for the wave equation,*Trans. Amer. Math. Soc., 368 (1) (2016), pp. 319-335[24] J.M. Melenk, S. Sauter,

*Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation,*SIAM J. Numer. Anal., 49 (3) (2011), pp. 1210-1243

[25] D. Tataru, *Unique continuation problems for partial differential equations, *C.B. Croke, M.S. Vogelius, G. Uhlmann, I. Lasiecka (Eds.), Geometric Methods in Inverse Problems and PDE Control, Springer, New York, NY (2004), pp. 239-255

*Pre-asymptotic error analysis of CIP-FEM and FEM for the Helmholtz equation with high wave number. Part I: linear version,*IMA J. Numer. Anal., 34 (3) (2014), pp. 1266-1288

[27] M. Zworski, *Semiclassical Analysis, *Graduate Studies in Mathematics, vol. 138, American Mathematical Society, Providence, RI (2012)