On the approximation of fixed points for non-self mappings on metric spaces

Abstract

Starting from some classical results of R. Conti, A. Haimovici and K. Iseki, and from a more recent result of S. Reich and A.J. Zaslavski, we present several theorems of approximation of the fixed points for non-self mappings on metric spaces. Both metric and topological conditions are involved. Some of the results are generalized to the multi-valued case. An application is given to a class of implicit first-order differential systems leading to a fixed point problem for the sum of a completely continuous operator and a nonexpansive mapping.

Authors

Adrian Petruşel
Babeş-Bolyai University, Cluj-Napoca, Romania

Radu Precup
Babes-Bolyai University, Cluj-Napoca, Romania

Marcel-Adrian Şerban
Babeş-Bolyai University, Cluj-Napoca, Romania

 

Keywords

Fixed point; metric space; generalized contraction mapping; measure of noncompactness; condensing mapping; nonexpansive mapping;  multi-valued operator; implicit differential equation

Paper coordinates

A. Petruşel, R. Precup, M.-A. Şerban  On the approximation of fixed points for non-self mappings on metric spaces, Discrete and Continuous Dynamical Systems – B, 2020, 25(2): 733-747, https://doi.org/10.3934/dcdsb.2019264

PDF

??

About this paper

Journal

Discrete and Continuous Dynamical Systems B

Publisher Name

American Institute of Mathematical Sciences

 

Print ISSN

1531-3492

Online ISSN

1553-524X

google scholar link

[1] J.-P. Aubin and H. Frankowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2, Birkhaäuser Boston, Inc., Boston, 1990.
[2] L. B. Ćirić, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19-26.
[3] R. Conti, Un’osservazione sulle transformazioni continue di uno spazio metrico e alcume applicazioni, Matematiche (Catania), 15 (1960), 92-97.
[4] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985. doi: 10.1007/978-3-662-00547-7.
[5] A. Haimovici, Un théorèe d’existence pour des équations fonctionnelles généralisant le th éorèe de Peano, An. Sti. Univ. “Al. I. Cuza” Iaşi. Secţ. I. (N.S.), 7 (1961), 65–76.
[6] K. Iseki, A theorem on existence of solution for functional equations, Math. Japon., 7 (1962), 203-204.
[7] R. Kannan, Some results on fixed points, Bull. Calcutta Math. Soc., 60 (1968), 71-76.
[8] W. A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl., (2004), 309–316. doi: 10.1155/S1687182004406081.
[9] W. Kirk and N. Shahzad, Fixed Point Theory in Distance Spaces, Springer, Cham, 2014. doi: 10.1007/978-3-319-10927-5.
[10] D. O’Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Series in Mathematical Analysis and Applications, 3, Gordon and Breach Science Publishers, Amsterdam, 2001.
[11] A. Petruşel, Operatorial Inclusions, House of the Book of Science, Cluj-Napoca, 2002.
[12] A. Petruşel, I. A. Rus and M.-A. Şerban, Fixed points, fixed sets and iterated multifunction systems for nonself multivalued operators, Set-Valued Var. Anal., 23 (2015), 223-237.  doi: 10.1007/s11228-014-0291-6.
[13] R. Precup, On the continuation principle for nonexpansive maps, Studia Univ. Babeş-Bolyai Math., 41 (1996), 85–89.
[14]      R. Precup, Existence and approximation of positive fixed points of nonexpansive maps, Rev. Anal. Numér. Théor. Approx., 26 (1997), 203-208.
[15] R. Precup, Methods in Nonlinear Integral Equations, Kluwer Academic Publishers, Dordrecht, 2002. doi: 10.1007/978-94-015-9986-3.
[16] D. Reem, S. Reich and A. J. Zaslavski, Two results in metric fixed point theory, J. Fixed Point Theory Appl., 1 (2007), 149-157.  doi: 10.1007/s11784-006-0011-4.
[17] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., 14 (1971), 121-124.  doi: 10.4153/CMB-1971-024-9.
[18] S. Reich, Fixed points of condensing functions, J. Math. Anal. Appl., 41 (1973), 460-467.  doi: 10.1016/0022-247X(73)90220-5.
[19] S. Reich and A. J. Zaslavski, A fixed point theorem for Matkowski contractions, Fixed Point Theory, 8 (2007), 303-307.
[20] S. Reich and A. J. Zaslavski, Genericity in Nonlinear Analysis, Developments in Mathematics, 34, Springer, New York, 2014. doi: 10.1007/978-1-4614-9533-8.
[21] I. A. Rus, Some fixed point theorems in metric spaces, Rend. Ist. Mat. Univ. Trieste, 3 (1971), 169-172.
[22] I. A. Rus and M.-A. Şerban, Some fixed point theorems for nonself generalized contraction, Miskolc Math. Notes, 17 (2016), 1021-1031.  doi: 10.18514/MMN.2017.1186.
[23] M.-A. Şerban, Some fixed point theorems for nonself generalized contraction in gauge spaces, Fixed Point Theory, 16 (2015), 393-398.

2020

Related Posts