[1] J.P. Aubin, A. Cellina, Differential Inclusions. Set-Valued Maps and Viability Theory, Springer-Verlag, 1984.
[2] O Aramă, D. Ripianu, On the polylocal problem for differential equations with constant coefficients (I), (II) (romanian), Studii şi cercetări ştiinţifice – Acad. R.P.R., Filiala Cluj VIII (1957).
[3] O. Aramă, D. Ripianu, Quelques recherche actuelles concernant l’équation de Ch. de la Vallée-Poussin rélative au problem polylocal dans la théorie des équations différentielles, Mathematica (Cluj), 8 (31) I (1966), pp.19-28.
[4] M.Biernacki, Sur un probléme d’interpolation relatif aux équaitons différentielle linéaires. Ann. de Sociéte Polonaise de Mathematique 20 (1947).
[5] P. Blaga, G. Micula, Polynomial natural spline functions of even degree, Studia Univ.”Babeş-Bolyai”, Mathematica XXXVIII, 2 (1993), pp.3-40.
[6] Ch. de la Vallee Poussin, Sur l’équation differentielle du second ordre. Détermination d’une integrale par deux valeurs assignées. Extension aux équations d’order n. Journ. Math. Pures et Appl. (9) 8 (1929).
[7] B.E. Karpilovskaja, The convergence of a method of interpolation for differential equations (russian), U.M.N.t. VIII, 3 (1953), pp.111-118.
[8] G. Micula, P. Blaga, M. Micula, On even degree polynomial spline functions with applications to numerical solution of differential equations with retarded argument. Technische Hochschule Darmstadt, Preprint No.1771 (1995), Fachbereich Mathematik.
[9] R. Mustăţa, On p-derivative-interpolating spline functions, Revue d’Anal. Num. et de Th. de l’Approx. XXVI 1-2 (1997), pp.149-163,
[10] C. Mustăţa, A. Mureşan, R. Mustaţă, The approximation by spline functions lf the solution of a singular perturbed bilocal problem, Revue d’anal. Num. et. de Th. de l’Approx. 27 (1998), 2, pp.297-308,
111] I. Păvăloiu, Introduction in the theory of approximation of the equations solutions, Ed. Dacia, Cluj-Napoca.
[12] S.A. Pruess, Solving Linear Boundary Value Problems by Approximating the Coefficients. Math. of Computation 27 (123) (1973), pp. 551-561, https://doi.org/10.1090/s0025-5718-1973-0371100-1
[14] D. Ripianu, Intervalles d’interpolation pour des équations différentielles linéaires. Mathematica (Cluj) 14 (37 2(1972), pp. 363-368.
[15] D. Ripianu, Sur certaines classes d’équations différentielles interpolatoire dans un intervalle donnée, Revue d’anal. Numer. et de Theor. de l’Approx., 3 (1974), 2, pp. 215-223,
Paper (preprint) in HTML form
1999-Mustata-On a problem of B.A. Karpilovskaya,-Jnaat
ON A PROBLEM OF B. A. KARPILOVSKAJA
COSTICĂ MUSTĂTA
In [7] one consider the following problem:
{:(1)y^((2p))(t)-varphi_(1)(t)y^((2p-1))(t)-cdots","-varphi_(2p)(t)y(t)=f(t)","quad t in[a","b]:}\begin{equation*}
y^{(2 p)}(t)-\varphi_{1}(t) y^{(2 p-1)}(t)-\cdots,-\varphi_{2 p}(t) y(t)=f(t), \quad t \in[a, b] \tag{1}
\end{equation*}
of the interval [a,b][a, b].
In the case when the nodes of the partition Delta_(n)^(')\Delta_{n}^{\prime} are the roots of the Chebyshev polynomial it is given an upper delimitation of the norm ||y- bar(y)||_(oo)\|y-\bar{y}\|_{\infty}, where yy is the exact solution of the problem (1)-(2). From this delimitation it follows that the order of approximation of the exact solution by the functions vec(y)\vec{y} given by (3) is O((ln n)/(n))O\left(\frac{\ln n}{n}\right).
In the following, taking as an approximant of the exact solution of the problem (1)-(2) a spline function belonging to the space S_(2m+2p-1)(Delta_(n))S_{2 m+2 p-1}\left(\Delta_{n}\right) of 2p2 p-derivative-interpolating spline functions, defined in [9], one proves that the
order of approximation is at least O((1)/(nsqrtn))O\left(\frac{1}{n \sqrt{n}}\right).
DEFINITION 1. Let m,n,p inN,n >= 2,p >= 1,m >= 2,m+p <= n+1m, n, p \in \mathbb{N}, n \geq 2, p \geq 1, m \geq 2, m+p \leq n+1 and let
be a partition of the interval [a,b][a, b].
A function s:RrarrRs: \mathbb{R} \rightarrow \mathbb{R} satisfying the conditions 1^(0)s inC^(2m+p-2)(R)1^{0} s \in C^{2 m+p-2}(\mathbb{R});
3^(0)s|_(I_(n))inB_(m+p-1),I_(0)=[t_(-1),t_(i)),I_(n+1)=[t_(n),t_(n+1))\left.3^{0} s\right|_{I_{n}} \in \mathscr{B}_{m+p-1}, I_{0}=\left[t_{-1}, t_{i}\right), I_{n+1}=\left[t_{n}, t_{n+1}\right),
is called a natural spline function of degree 2m+p-12 m+p-1.
Here P_(r)(r inN)\mathscr{P}_{r}(r \in \mathbb{N}) stands for the set of polynomials of degree at most rr.
Denoting by S_(2m+p-1)(Delta_(n))S_{2 m+p-1}\left(\Delta_{n}\right) the set of all functions verifying the conditions 1^(0)-3^(0)1^{0}-3^{0} from Definition 1, one sees that each s inS_(2m+p-1)(Delta_(n))s \in S_{2 m+p-1}\left(\Delta_{n}\right) admits a representation of the form.
(97202 bry in
{:(8)(t-t_(k))_(+)={[0","," if "t <= t_(k)","],[t-t_(k)","," if "t > t_(k)","t in[a","b].]:}:}\left(t-t_{k}\right)_{+}=\left\{\begin{array}{cc}
0, & \text { if } t \leq t_{k}, \tag{8}\\
t-t_{k}, & \text { if } t>t_{k}, t \in[a, b] .
\end{array}\right.
(see Theorem 2 from [9]).
Taking into account the representation (7) and the conditions (8), it follows that each s inS_(2m+p-1)(Delta_(n))s \in S_{2 m+p-1}\left(\Delta_{n}\right) depends on n+p+1n+p+1 free parameteres, so that S_(2m+p-1)(Delta_(n))S_{2 m+p-1}\left(\Delta_{n}\right) is a vector space of dimension n+p+1n+p+1 with respect to the usual (pointwise) of addition and multiplication by scalar of real functions.
The following theorem will allow us to use a spline function from S_(2m+2p-1)(Delta_(n))S_{2 m+2 p-1}\left(\Delta_{n}\right) as an approximant for the solution of the problem (1)-(2).
where t_(k),k=0,nt_{k}, k=0, n are the nodes of the partition Delta_(n)\Delta_{n} and alpha^((q)),beta^((q)),q=0,p-1\alpha^{(q)}, \beta^{(q)}, q=0, p-1 and gamma_(k),k= bar(0,n)\gamma_{k}, k=\overline{0, n}, are given numbers.
Then there exists a unique spline function s inS_(2m+2p-1)(Delta_(n))s \in S_{2 m+2 p-1}\left(\Delta_{n}\right) such that
having 2p+n+1+m2 p+n+1+m equations and the same number of unknowns: A_(0),A_(1),dotsA_(m+2p-1),a_(0),a_(1),dots,a_(n)A_{0}, A_{1}, \ldots A_{m+2 p-1}, a_{0}, a_{1}, \ldots, a_{n}. qquad\qquad ,:
(iii)
This system has a unique solution if and only if the associated homogeneous system (obtained for alpha^((q))=0=beta^((q)),q= bar(0,p-1),gamma_(k)=0,k= bar(0,n)\alpha^{(q)}=0=\beta^{(q)}, q=\overline{0, p-1}, \gamma_{k}=0, k=\overline{0, n} ) has only the null solution.
Let's show that, if s inS_(2m+2p-1)s \in S_{2 m+2 p-1} verifies s^((q))(a)=s^((q))(b)=0,quad q= bar(0,p-1)s^{(q)}(a)=s^{(q)}(b)=0, \quad q=\overline{0, p-1}; s^((2p))(t_(k))=0,k= bar(0,n)s^{(2 p)}\left(t_{k}\right)=0, k=\overline{0, n} then s-=0s \equiv 0 or R\mathbb{R}.
But s^((m+2p+j))(t_(0))=s^((m+2p+j))(t_(n))=0,quad j= bar(0,m-2)s^{(m+2 p+j)}\left(t_{0}\right)=s^{(m+2 p+j)}\left(t_{n}\right)=0, \quad j=\overline{0, m-2} (by Condition 3^(0)3^{0} from Definition 1) so that
where C_(k)=s^((2m+2p-1))(t)|_(l_(k))quad k= bar(l,n)C_{k}=\left.s^{(2 m+2 p-1)}(t)\right|_{l_{k}} \quad k=\overline{l, n} (by Condition 2^((1))2^{(1)} from Definition 1).
Therefore, s^((m+2p))(t)=0s^{(m+2 p)}(t)=0, for all t in[a,b]t \in[a, b].
Since s inP_(m+2p-1)s \in \mathscr{P}_{m+2 p-1} on I_(0)uuI_(n+1)I_{0} \cup I_{n+1} it follows s^((m+2p))(t)=0s^{(m+2 p)}(t)=0 for any t inI_(0)uuI_(n+1)t \in I_{0} \cup I_{n+1}. By continuity of s^((m+2p))s^{(m+2 p)} on R\mathbb{R} it follows s^((m+2p))(t)=0s^{(m+2 p)}(t)=0 for all t in Rt \in R (see the Condition 1^(0)1^{0} from Definition 1). Then s inP_(m+2p-1)s \in \mathscr{P}_{m+2 p-1} on R\mathbb{R}, implies s^((2p))inm_(m-1)s^{(2 p)} \in m_{m-1} on R\mathbb{R}. But s^((2p))(t_(k))=0,k= bar(0,n)(n > m)s^{(2 p)}\left(t_{k}\right)=0, k=\overline{0, n}(n>m) implies s^((2p))(t)=0s^{(2 p)}(t)=0 for all t inRt \in \mathbb{R} and, consequently, s inP_(p-1)s \in \mathscr{P}_{p-1} on R\mathbb{R}.
As s^((q))(a)=s^((q))(b)=0,q=0,1,dots,p-1s^{(q)}(a)=s^{(q)}(b)=0, q=0,1, \ldots, p-1 we infer that s-=0s \equiv 0 or R\mathbb{R}. But then all the coefficients of ss are null, so that the homogeneous system associated to (11) has only the null solution.
Remark 1. By. Theorem 2, if yy is the exact solution of the differental tions (1) with condition (2), then there is only one function s_(x)inS_(2m+2p-1)(Delta_(n))s_{x} \in S_{2 m+2 p-1}\left(\Delta_{n}\right) verifying the conditions (2).
By Theorem 2, there is only one spline function s_(y)inS_(2m+2p-1)(Delta_(n))s_{y} \in S_{2 m+2 p-1}\left(\Delta_{n}\right) such that s_(y)inH_(2)^(m+2p)(Delta_(n),Y)s_{y} \in H_{2}^{m+2 p}\left(\Delta_{n}, Y\right).
Furthermore, we have:
Theorem 3. ([9], Th. 5 and Th. 6).
a) If g inH_(2)^(m+2p)(Delta_(n),Y)g \in H_{2}^{m+2 p}\left(\Delta_{n}, Y\right) then
(14)
aroh किसी
where C_(k)=s^((2m+2p-1))|_(I_(k))k=1,2,dots,nC_{k}=\left.s^{(2 m+2 p-1)}\right|_{I_{k}} k=1,2, \ldots, n and s_(y)^((m+2p+j))(a)=s_(y)^((m+2p+j))(b)=0s_{y}^{(m+2 p+j)}(a)=s_{y}^{(m+2 p+j)}(b)=0 for j=0,1,dots,m-2j=0,1, \ldots, m-2 (by Condition 3^(0)3^{0} from Definition 1).
where, by integrating by parts, the last term is again null. To show this one uses the equalities
graí ow sampration
(이이2 (h)quad(s^((m+2p+i))-s_(f)^((m+2p+j)))(a)=(s^((m+2p+i))-s_(f)^((m+2p+j)))(b)=0(h) \quad\left(s^{(m+2 p+i)}-s_{f}^{(m+2 p+j)}\right)(a)=\left(s^{(m+2 p+i)}-s_{f}^{(m+2 p+j)}\right)(b)=0
for j=0,1,2,dots,m-2j=0,1,2, \ldots, m-2, and
Returning to the problem (1)-(2) we deduce
COROLLARY 4. If the exact solution yy of the problem (1)-(2) is in H^((m+2p))([a,b])H^{(m+2 p)}([a, b]) and s_(Y)inS_(2m+p-1)(Delta_(n))s_{Y} \in S_{2 m+p-1}\left(\Delta_{n}\right) is the spline function associated to yy, verifing the same boundary conditions as yy, then the following evaluation
holds.
THEOREM 5. If yy is the exact solution of the problem (1)-(2), y inH^((m+2p))([a,b])y \in H^{(m+2 p)}([a, b]) and s_(y)inS_(2m+p-1)(Delta_(n))s_{y} \in S_{2 m+p-1}\left(\Delta_{n}\right) is the approximant spline function, then the following inequalities:
holds, for l={2,3,dots,m}l=\{2,3, \ldots, m\} and ||Delta_(n)||=max{t_(i)-t_(i-1),i= bar(1,n)}\left\|\Delta_{n}\right\|=\max \left\{t_{i}-t_{i-1}, i=\overline{1, n}\right\}.
Proof. We have
y^((2p))(t_(i))-s_(y)^((2p))(t_(i))=0,quad i=0,1,2,dots,n.y^{(2 p)}\left(t_{i}\right)-s_{y}^{(2 p)}\left(t_{i}\right)=0, \quad i=0,1,2, \ldots, n .
By Rôlle's Theorem it follows the existence of the points t_(i)^((1))in(t_(i),t_(i+1))t_{i}^{(1)} \in\left(t_{i}, t_{i+1}\right), i=0,1,2,dots,n-1i=0,1,2, \ldots, n-1 such that
Applying again Rôlle's Theorem for y^((2p+1))y^{(2 p+1)} one obtains the existence of the points t_(i)^((2))in(t_(i)^((1)),t_(i+1)^((1))),i=0,1,2,dots,n-2t_{i}^{(2)} \in\left(t_{i}^{(1)}, t_{i+1}^{(1)}\right), i=0,1,2, \ldots, n-2 such that
Since |a-t_(0)^((m-1))| < m||Delta_(n)||\left|a-t_{0}^{(m-1)}\right|<m| | \Delta_{n} \| and |b-t_(n-m+1)^((m-1))| < ||Delta_(n)||\left|b-t_{n-m+1}^{(m-1)}\right|<\left\|\Delta_{n}\right\| it follows that for every t in[a,b]t \in[a, b] there is i_(0)in{0,1,dots,n-m+1}i_{0} \in\{0,1, \ldots, n-m+1\} such that
necessary for the numerical treatment of the problem (1)-(2).
COROLLARY 6. If the exact solution yy of the problem (1)-(2) belongs to H_(2)^(m+2p)([a,b])H_{2}^{m+2 p}([a, b]) and s_(y)inS_(2m+2p-1)(Delta_(n))s_{y} \in S_{2 m+2 p-1}\left(\Delta_{n}\right) is the associated spline solution, then the following estimation hold:
for q=0,1,2dots.2 p-1q=0,1,2 \ldots .2 p-1.
Proof. Since y(t_(0))-s_(v)(t_(0))=y(t_(n))-s_(y)(t_(n))=0y\left(t_{0}\right)-s_{v}\left(t_{0}\right)=y\left(t_{n}\right)-s_{y}\left(t_{n}\right)=0, it follows that there exists at least one point t_(0)^((1))in(t_(0),t_(ij))t_{0}^{(1)} \in\left(t_{0}, t_{i j}\right) such that
Then it will exist the points t_(0)^((2))in(t_(0),t_(0)^((1))),t_(1)^((2))in(t_(0)^((1)),t_(n)),quadt_(0) < t_(0)^((2))<<t_(1)^((2)) < t_(n)t_{0}^{(2)} \in\left(t_{0}, t_{0}^{(1)}\right), t_{1}^{(2)} \in\left(t_{0}^{(1)}, t_{n}\right), \quad t_{0}<t_{0}^{(2)}< <t_{1}^{(2)}<t_{n} such that
In general, for every q in{2,dots,p-1}q \in\{2, \ldots, p-1\} there are the points t_(0)^((q))in(t_(0),t_(0)^((q-1))),quadt_(1)^((q))in(t_(0)^((q-1)),t_(1)^((q-1))),cdots,t_(q-1)^((q))in(t_(q-2)^((q-1)),t_(n)),Deltat_(0) < t_(0)^((q)) < t_(1)^((q)) < cdots < t_(q-1)^((q)) < t_(n)t_{0}^{(q)} \in\left(t_{0}, t_{0}^{(q-1)}\right), \quad t_{1}^{(q)} \in\left(t_{0}^{(q-1)}, t_{1}^{(q-1)}\right), \cdots, t_{q-1}^{(q)} \in\left(t_{q-2}^{(q-1)}, t_{n}\right), \Delta t_{0}<t_{0}^{(q)}<t_{1}^{(q)}<\cdots <t_{q-1}^{(q)}<t_{n} such that
at which the (p-1)(p-1) - derivative of the difference y(t)-s_(y)(t)y(t)-s_{y}(t) vanishes
Finally, we deduce the existence of a point bar(t)_(1)in(a,b)\bar{t}_{1} \in(a, b) such that
But then, for all t in[a,b]t \in[a, b] we have
-|yothic who (2p-1) (t)-s_(y)^((2p-1))(t)|=|int_(t_(1))^(t)[y^((2p))(h)-s_(y)^((2p))(h)]dh| <= :}(t)-s_{y}^{(2 p-1)}(t)\left|=\left|\int_{t_{1}}^{t}\left[y^{(2 p)}(h)-s_{y}^{(2 p)}(h)\right] d h\right| \leq\right. intoline sith to zehon and an <= |t-t_(1)|*||y^((2n))-s_(2)^((2p))||_(oo)\leq\left|t-t_{1}\right| \cdot\left\|y^{(2 n)}-s_{2}^{(2 p)}\right\|_{\infty}
so that
Problem (P1) is a problem of Karpilovskaja type for a fourth order differential equation which is studied also in [12].
In Table 1 the maximum values of the error at the nodes of the uniform partition Delta_(n):n=5,10,20,30,40\Delta_{n}: n=5,10,20,30,40 are presented
Table 1
n
maximum values of the error at the nodes of Delta_(||)\Delta_{\|}
5
0.0000380786
10
0.0000023077
20
0.0000001162
30
0.0000000198
40
0.0000000055
n maximum values of the error at the nodes of Delta_(||)
5 0.0000380786
10 0.0000023077
20 0.0000001162
30 0.0000000198
40 0.0000000055| n | maximum values of the error at the nodes of $\Delta_{\\|}$ |
| ---: | :---: |
| 5 | 0.0000380786 |
| 10 | 0.0000023077 |
| 20 | 0.0000001162 |
| 30 | 0.0000000198 |
| 40 | 0.0000000055 |
REFERENCES
[1] J-P. Aubin, A. Cellina. Differential Inclusions. Set-Valued Maps and Viability Theory: Springer-Verlag. 1984
[2] O. Aramă, D. Ripianu, On the polylocal problem for differential equations with constant coefficients (I), (II) (romanian), Studii si cercetări stiintifice - Acad. R.P.R., Filiala Cluj VIII (1957).
[3] O. Aramă, D. Ripianu, Quelques recherche actuelles concernant l'équation de Ch. de la Vallée-Poussin rélative au problem polylocal dans la théorie des équations différeatielles. Mathematica (Cluj) 8 (31) / (1966). 19-28.
141 M. Biernacki, Sur un probléme d'interpolation relatif aux équations différentielle linéaires. Ann. de Sociéte Polonaisé de Mathematique 20 (1947).
[5] P. Blaga, G. Micula, Polynomial natural spline functions of even degree, Studia Univ: "Babeş-Bolyai", Mathentatica XXXVIII, 2 (1993), 31-40.
16] Ch. de la Vallée Poussin, Sur l'équation differentielle du second ordre. Détermination d'une integrale par deux valeurs assignées. Extension aux équations d'order n. Journ. Math. Pures et Appl. (9) 8 (1929).
[7] B. E. Karpilovskaja, The convergence of a method of interpolation for differential equations (russian), U.M.N.t. VIII, 3 (1953) 111-118.
18] G. Micula, P. Blaga, M. Micula, On even degree polynomial spline finctions with applications to numerical solution of differential equations with retarded argument. Technische Hochschule Darmstadt, Preprint No. 1771 (1995), Fachbereich Mathematik.
[9] R. Mustaṭă, On pp-derivative-interpolating spline functions、 Revue d'Anal. Num. et de Th. de l'Approx. XXVI 1-2 (1997), 149-163.
[10] C. Mustăta, A. Mureşan, R. Mustață, The approximation by spline functions of the solution of a singular perturbed bilocal problem, Revee d'Anal. Num. et de Th. de l'Approx., 27 (1998) 2. 297-308
|11| I. Păvăloiu, Introduction in the theory of approximation of the equations solutions, Ed. Dacia, Cluj-Napoca.
[12] S. A. Pruess, Solving Linear Boundary Value Problems by Approximating the Coefficients. Math. of Computation 27(123) (1973), 551-561.
[13] D. Ripianu, Intervalles d'interpolation pour des équations différentielles linéaires, Mathematica (Cluj) 14 (37) 2 (1972), 363-368.
[14] D. Ripianu. Sur certaines classes d'équations différentielles interpolatoire dans un intervalle donnée, Revie d'Anal. Num. et de Th. de l'Approx., 3 (1974) 2, 215-223.
Received Mars 03, 1998
"T. Popoviciu" Institut of Numerical Analysis
P.O. Box 68
3400 Cluj-Napoca 1
Romania
THEOREM 2. Suppose that f:RrarrRf: \mathbb{R} \rightarrow \mathbb{R} verifies the conditions: