Starting from a positive summation integral operator we present linear combinations of these operators which under definite conditions approximate a function more closely then the above operators. Also we establish a connection between the local smoothness of local Lipschitz \(-\alpha\left( 0<\alpha\leq1\right)\) functions and the local approximating property.


Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania


Beta-function; linear positive operator; Baskakov operator; local Lipschitz function 

Paper coordinates

O. Agratini, Properties concerning the Baskakov-Beta operators, in: Analysis, Functional Equations, Approximation and Convexity, Proceedings of the Conference held in honour of Professor Elena Popoviciu on the occasion of her 75th birthday, Editura Carpatica, pp. 1-7, 1999.


About this paper

Publisher Name

Editura Carpatica

Print ISSN
Online ISSN

google scholar link

[1] V.A., Baskakov, An exemple of a sequence of linear positive operators in the space of continuous funcitons,  Dokl. Akad, Nauk, SSSR 113 (1957), 249-251.
[2] P.L. Butzer,  Linear combinations of Bernstein polynomials,  Canad. Math. J. 5 (1953), 559-567.
[3] Z. Ditzian and V. Totik,  “Moduli of Smoothness”. Springer in Computational Mathematics, vol. 9, Springer Verlag, Berlin-Heidleberg-New York, 1987.
[4] J.L. Durrmeyer,  Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments. These de 3e cycle, Faculte des Sciences de l’Univeriste de Paris, 1967.
[5] V. Gupta,  Rate of convergence by Baskakov operators. Mathematica, Tome 37 (60), no. 1-2, 1995, 109-117.
[6] C.P. May, Saturation and inverse theorems for combinations of a class of exponential-type operators, Canad. J. Math., 28 (1976), 1224-1250.


Related Posts