The convergence of certain iterative methods for solving certain operator equations

Abstract

We consider the solving of the equation \[x=\lambda D\left( x\right)+y,\] where \(E\) is a Banach space and \(D:E\rightarrow E\), \(\lambda\in \mathbb{R}\), \(y\in E\). We study the convergence of the iterations \[x_{n+1}=x_{n}-A\left( x_{n}\right)\left[ x_{n}-\lambda D\left( x_{n}\right) -y\right],  \ n=0,1,…, \ x_{0}\in E,\] where \(A:E\rightarrow E\) is a linear mapping. We assume that the operator \(P\) given by \(P\left( x\right) =x-\lambda D\left( x\right) -y\) is two times Frechet differentiable, with \(P^{\prime}\left( x\right)=I-\lambda D^{\prime}\left( x\right)\), \(P^{\prime \prime}\left(x\right) =-\lambda D^{\prime \prime}\left( x\right) \). Under certain assumptions on boundedness of \(A\) and \(P\) we obtain convergence results for the considered sequences.

Authors

Ion Păvăloiu
(Tiberiu Popoviciu Institute of Numerical Analysis)

Authors

Original title (in French)

La convergence de certaines méthodes itératives pour résoudre certaines equations operationnelles

English translation of the title

The convergence of certain iterative methods for solving certain operator equations

Keywords

nonlinear operator equation; Banach space; iterative method;

PDF

Cite this paper as:

I. Păvăloiu, La convergence de certaines méthodes itératives pour résoudre certaines equations operationnelles, Seminar on functional analysis and numerical methods, Preprint no. 1 (1986), pp. 127-132 (in French).

About this paper

Journal

Seminar on functional analysis and numerical methods,
Preprint

Publisher Name

“Babes-Bolyai” University,
Faculty of Mathematics,
Research Seminars

DOI

Not available yet.

References

[1] L.V. Kantorovici, O metodi Niutona Trudi Mat. Inst. V.A. Steklova 28, 104–144 (1949).

[2] A. Diaconu, I. Pavaloiu, Sur quelque methodes iteratives pour la resolution des equations op erationnelles, Rev. Anal. Num´er. Theor. Approx., vol. 1, 45–61 (1972). (journal link )

[3] I. Pavaloiu, Sur les procedes iteratifs a un ordre eleve de convergence, Mathematica (Cluj), 12 (35) 1, 149–158 (1970).

1986

Related Posts