A viscoplastic contact problem with normal compliance, unilateral constraint and memory term

Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The material’s behavior is modelled with a rate-type constitutive law with internal state variable. The contact is frictionless and is modelled with normal compliance, unilateral constraint and memory term.

We present the classical formulation of the problem, list the assumptions on the data and derive a variational formulation of the model. Then we prove its unique weak solvability. The proof is based on arguments of history-dependent quasivariational inequalities.

We also study the dependence of the solution with respect to the data and prove a convergence result.

Authors

Mircea Sofonea
(Laboratoire de Mathématiques et Physique, Université de Perpignan)

Flavius Patrulescu
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Anca Farcaş
(Babeş-Bolyai University Faculty of Mathematics and Computer Sciences)

Keywords

viscoplastic material; frictionless contact; normal compliance; unilateral constraint; memory term; history-dependent variational inequality, weak solution; Fréchet space

Cite this paper as:

M. Sofonea, F. Pătrulescu, A. Farcaş, A viscoplastic contact problem with normal compliance, unilateral constraint and memory term, Appl. Math. Opt., vol. 62 (2014), pp. 175-198

PDF

About this paper

Journal

Applied Mathematics and Optimization

Publisher Name

Springer US, New York, NY

Print ISSN

0095-4616

Online ISSN

1432-0606

MR

3175193

ZBL

1297.74086

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly of Mechanics and Applied Mathematics, 65 (2012), 555-579.
[2] C. Corduneanu, Problemes globaux dans la theorie des equations Integrales de Volterra, Ann. Math. Pure Appl., 67 (1965), 349-363.
[3] N. Cristescu, I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest, (1982).
[4] A. Farcas, F. Patrulescu, M. Sofonea, A history-dependent contact problem with unilateral constraint, Mathematics and its Applications, 2 (2012), 105-111.
[5] J.R. Fernandez-Garcia, W. Han, M. Sofonea, J.M. Viano, Variational and numerical analysis of a frictionless contact problem for elastic-viscoplastic materials with internal state variable, Quarterly of Mechanics and Applied Mathematics, 54 (2001), 501-522.
[6] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Society–International Press, Sommerville, MA (2002).
[7] I.R. Ionescu, M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford (1993).
[8] J. Jarusek, M. Sofonea, On the solvability of dynamic elastic-visco-plastic contact problems, Zeitschrift fur Angewandte Matematik und Mechanik (ZAMM), 88 (2008), 3-22.
[9] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[10] A. Klarbring, A. Mikelic, M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci., 26 (1988), 811-832.
[11] A. Klarbring, A. Mikelic, M. Shillor, On friction problems with normal compliance, Nonlinear Analysis, 13 (1989), 935-955.
[12] J.J. Massera, J.J. Schaffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London (1966).
[13] J.A.C.Martins, J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA, 11 (1987), 407-428.
[14] J.T. Oden, J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527-634.
[15] M. Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin (2004).
[16] M. Sofonea, C. Avramescu, A. Matei, A Fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on pure and Applied Analysis, 7(2008), 645-658.
[17] M. Sofonea, A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics, Eur. J. Appl. Math., 22 (2011), 471-491.
[18] M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).

Paper (preprint) in HTML form

A Viscoplastic Contact Problem with Normal Compliance, Unilateral Constraint and Memory Term

M. Sofonea 1, F. Pătrulescu 2 and A. Farcaş 3
1 Laboratoire de Mathématiques et Physique
Université de Perpignan Via Domitia
52 Avenue de Paul Alduy, 66860 Perpignan, France
2 Tiberiu Popoviciu Institute of Numerical Analysis
P.O. Box 68-1, 400110 Cluj-Napoca, Romania
3 Faculty of Mathematics and Computer Science Babeş-Bolyai University
Kogălniceanu street, no. 1, 400084, Cluj-Napoca, Romania
Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoplastic body and a foundation. The material’s behavior is modelled with a rate-type constitutive law with internal state variable. The contact is frictionless and is modelled with normal compliance, unilateral constraint and memory term. We present the classical formulation of the problem, list the assumptions on the data and derive a variational formulation of the model. Then we prove its unique weak solvability. The proof is based on arguments of history-dependent quasivariational inequalities. We also study the dependence of the solution with respect to the data and prove a convergence result.

2010 Mathematics Subject Classification : 74M15, 74G25, 74G30, 49J40.

Keywords: viscoplastic material, frictionless contact, normal compliance, unilateral constraint, memory term, history-dependent variational inequality, weak solution, Fréchet space.

1 Introduction

The aim of this paper is to study a frictionless contact problem for rate-type viscoplastic materials within the framework of the Mathematical Theory of Contact Mechanics. We model the material’s behavior with a constitutive law of the form

𝝈˙(t)=𝜺(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t)),𝜿(t)),\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t)), (1.1)

where 𝒖\boldsymbol{u} denotes the displacement field, 𝝈\boldsymbol{\sigma} represents the stress tensor, 𝜺(𝒖)\boldsymbol{\varepsilon}(\boldsymbol{u}) is the linearized strain tensor and 𝜿\boldsymbol{\kappa} denotes an internal state variable. Here \mathcal{E} is a linear operator which describes the elastic properties of the material and 𝒢\mathcal{G} is a nonlinear constitutive function which describes its viscoplastic behavior. In (1.1) and everywhere in this paper the dot above a variable represents the derivative with respect to the time variable tt. Following [3, 7], the internal state variable 𝜿\boldsymbol{\kappa} is a vector-valued function whose evolution is governed by the differential equation

𝜿˙(t)=𝑮(𝝈(t),𝜺(𝒖(t)),𝜿(t)),\dot{\boldsymbol{\kappa}}(t)=\boldsymbol{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t)), (1.2)

in which 𝑮\boldsymbol{G} is a nonlinear constitutive function with values in m,m\mathbb{R}^{m},m being a positive integer.

Various results, examples and mechanical interpretations in the study of viscoplastic materials of the form (1.1), (1.2) can be found in [3, 7, and the references therein. Quasistatic contact problems for such materials have been considered in 5, 6) and the references therein. There, the contact was assumed to be frictionless and was modelled with normal compliance; the unique weak solvability of the corresponding problems was proved by using arguments of nonlinear equations with monotone operators and fixed point; semi-discrete and fully discrete scheme were considered, error estimates and convergence results were proved and numerical simulation in the study of two-dimensional test problems were presented. The normal compliance contact condition was first introduced in [14] and since then used in many publications, see, e.g., 9, 10, 11, 13] and references therein. The term normal compliance was first introduced in [10, 11.

In the particular case without internal state variable the constitutive equation (1.1) reads

𝝈˙(t)=𝜺(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t))),\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))), (1.3)

and was used in the literature in order to model the behaviour of various materials like rubbers, rocks, metals, pastes and polymers. Quasistatic frictionless contact problems for materials of the form (1.3) have been considered in [1, 6, 15, 18] and the references therein, under various contact conditions. In [6, 15] both the Signorini and the normal compliance condition were used which, recall, describe a contact with a rigid and elastic foundation, respectively. In [1, 18] the contact was modelled with normal compliance and unilateral constraint condition. This condition, introduced for the first time in [8], models an elastic-rigid behavior of the foundation.

With respect to the papers above mentioned, the current paper has three traits of novelties that we describe in what follows. First, the model we consider involves a contact condition with normal compliance, unilateral constraint and memory term. This condition takes into account both the deformability, the rigidity, and the memory effects of the foundation. Second, in contrast with the short note [4], we model the behavior of the material with a viscoplastic constitutive law with internal state variable. And, finally, we study the contact process on an unbounded interval of time which implies the use of the framework of Fréchet spaces of continuous functions, instead of that of the classical Banach spaces of continuous functions defined on a bounded interval of time. The three ingredients above lead to a new and interesting mathematical model. The aim of this work is to prove the unique weak solvability of this model and to study the dependence of the weak solution with respect to the data.

The rest of the paper is structured as follows. In Section 2 we present the notation we shall use as well as some preliminary material. In Section 3 we describe the model of the contact process. In Section 4 we list the assumptions on the data and derive the variational formulation of the problem. Then we state and prove our main existence and uniqueness result, Theorem 4.1. In Section 5 we state and prove our converge result, Theorem 5.1. It states the continuous dependence of the solution with respect to the data.

2 Notations and preliminaries

Everywhere in this paper we use the notation \mathbb{N}^{*} for the set of positive integers and +\mathbb{R}_{+}will represent the set of nonnegative real numbers, i.e. +=[0,+)\mathbb{R}_{+}=[0,+\infty). For a given rr\in\mathbb{R} we denote by r+r^{+}its positive part, i.e. r+=max{r,0}r^{+}=\max\{r,0\}. Let Ω\Omega be a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma and let Γ1\Gamma_{1} be a measurable part of Γ\Gamma such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. We use the notation 𝒙=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ΩΓ\Omega\cup\Gamma and we denote by 𝝂=(νi)\boldsymbol{\nu}=\left(\nu_{i}\right) the outward unit normal at Γ\Gamma. Here and below the indices i,j,k,li,j,k,l run between 1 and dd and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=ui/xju_{i,j}=\partial u_{i}/\partial x_{j}.

We denote by 𝕊d\mathbb{S}^{d} the space of second order symmetric tensors on d\mathbb{R}^{d} or, equivalently, the space of symmetric matrices of order dd. The inner product and norm on d\mathbb{R}^{d} and 𝕊d\mathbb{S}^{d} are defined by

𝒖𝒗=uivi,𝒗=(𝒗𝒗)12𝒖,𝒗d𝝈𝝉=σijτij,𝝉=(𝝉𝝉)12𝝈,𝝉𝕊d\begin{array}[]{llrl}\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},&\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}&\forall\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}\\ \boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},&\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}&\forall\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}\end{array}

Also, we use the notation 𝜿\|\boldsymbol{\kappa}\| for the Euclidean norm of the element 𝜿m\boldsymbol{\kappa}\in\mathbb{R}^{m}. In addition, we use standard notation for the Lebesgue and Sobolev spaces associated
to Ω\Omega and Γ\Gamma and, moreover, we consider the spaces

V={𝒗=(vi)H1(Ω)d:𝒗=𝟎 on Γ1},Q={𝝉=(τij)L2(Ω)d×d:τij=τji}.V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\},\quad Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}.

These are real Hilbert spaces endowed with the inner products

(𝒖,𝒗)V=Ω𝜺(𝒖)𝜺(𝒗)𝑑x,(𝝈,𝝉)Q=Ω𝝈𝝉𝑑x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms V\|\cdot\|_{V} and Q\|\cdot\|_{Q}, respectively. Here 𝜺\boldsymbol{\varepsilon} represents the deformation operator given by

𝜺(𝒗)=(εij(𝒗)),εij(𝒗)=12(vi,j+vj,i)𝒗H1(Ω)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\forall\boldsymbol{v}\in H^{1}(\Omega)^{d}.

Completeness of the space ( V,VV,\|\cdot\|_{V} ) follows from the assumption meas (Γ1)>0\left(\Gamma_{1}\right)>0, which allows the use of Korn’s inequality.

For an element 𝒗V\boldsymbol{v}\in V we still write 𝒗\boldsymbol{v} for the trace of 𝒗\boldsymbol{v} on the boundary and we denote by vνv_{\nu} and 𝒗τ\boldsymbol{v}_{\tau} the normal and tangential components of 𝒗\boldsymbol{v} on Γ\Gamma, given by vν=𝒗𝝂,𝒗τ=𝒗vν𝝂v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{\nu},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{\nu}. Let Γ3\Gamma_{3} be a measurable part of Γ\Gamma. Then, by the Sobolev trace theorem, there exists a positive constant c0c_{0} which depends on Ω,Γ1\Omega,\Gamma_{1} and Γ3\Gamma_{3} such that

𝒗L2(Γ3)dc0𝒗V𝒗V\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{v}\in V (2.1)

Also, for a regular function 𝝈Q\boldsymbol{\sigma}\in Q we use the notation σν\sigma_{\nu} and 𝝈τ\boldsymbol{\sigma}_{\tau} for the normal and the tangential traces, i.e. σν=(𝝈𝝂)𝝂\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{\nu})\cdot\boldsymbol{\nu} and 𝝈τ=𝝈𝝂σν𝝂\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{\nu}-\sigma_{\nu}\boldsymbol{\nu}. Moreover, we recall that the divergence operator is defined by the equality Div𝝈=(σij,j)\operatorname{Div}\boldsymbol{\sigma}=\left(\sigma_{ij,j}\right) and, finally, the following Green’s formula holds:

Ω𝝈𝜺(𝒗)𝑑x+ΩDiv𝝈𝒗dx=Γ𝝈𝝂𝒗𝑑a𝒗V\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}\boldsymbol{\nu}\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V (2.2)

Finally, we denote by 𝐐\mathbf{Q}_{\infty} the space of fourth order tensor fields given by

𝐐={=(ijkl):ijkl=jikl=klijL(Ω),1i,j,k,ld}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and we recall that 𝐐\mathbf{Q}_{\infty} is a real Banach space with the norm

𝐐=max1i,j,k,ldijklL(Ω)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}

Moreover, a simple calculation shows that

𝝉Qd𝐐𝝉Q𝐐,𝝉Q\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q}\quad\forall\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q (2.3)

For each Banach space XX we use the notation C(+;X)C\left(\mathbb{R}_{+};X\right) for the space of continuous functions defined on +\mathbb{R}_{+}with values in XX. For a subset KXK\subset X we still use the symbol C(+;K)C\left(\mathbb{R}_{+};K\right) for the set of continuous functions defined on +\mathbb{R}_{+}with values in KK. It is well known that C(+;X)C\left(\mathbb{R}_{+};X\right) can be organized in a canonical way as a Fréchet space,
i.e. as a complete metric space in which the corresponding topology is induced by a countable family of seminorms. Details can be found in [2] and [12], for instance. Here we restrict ourseleves to recall that the convergence of a sequence (xk)k\left(x_{k}\right)_{k} to the element xx, in the space C(+;X)C\left(\mathbb{R}_{+};X\right), can be described as follows:

{xkx in C(+;X) as k if and only if maxr[0,n]xk(r)x(r)X0 as k, for all n\left\{\begin{array}[]{l}x_{k}\rightarrow x\quad\text{ in }C\left(\mathbb{R}_{+};X\right)\text{ as }k\rightarrow\infty\text{ if and only if }\\ \max_{r\in[0,n]}\left\|x_{k}(r)-x(r)\right\|_{X}\rightarrow 0\text{ as }k\rightarrow\infty,\text{ for all }n\in\mathbb{N}^{*}\end{array}\right.

The following fixed-point result will be used in Section 4 of the paper.
Theorem 2.1 Let ( X,XX,\|\cdot\|_{X} ) be a real Banach space and let Λ:C(+;X)C(+;X)\Lambda:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};X\right) be a nonlinear operator with the following property: there exists c>0c>0 such that

Λu(t)Λv(t)Xc0tu(s)v(s)X𝑑s\|\Lambda u(t)-\Lambda v(t)\|_{X}\leq c\int_{0}^{t}\|u(s)-v(s)\|_{X}ds (2.5)

for all u,vC(+;X)u,v\in C\left(\mathbb{R}_{+};X\right) and for all t+t\in\mathbb{R}_{+}. Then the operator Λ\Lambda has a unique fixed point ηC(+;X)\eta^{*}\in C\left(\mathbb{R}_{+};X\right).

Theorem 2.1 represents a simplified version of Corollary 2.5 in [16. We underline that in (2.5) and below, the notation Λη(t)\Lambda\eta(t) represents the value of the function Λη\Lambda\eta at the point tt, i.e. Λη(t)=(Λη)(t)\Lambda\eta(t)=(\Lambda\eta)(t).

Consider now a real Hilbert space XX with inner product (,)X(\cdot,\cdot)_{X} and associated norm X\|\cdot\|_{X} as well as a normed space YY with norm Y\|\cdot\|_{Y}. Let KK be a subset of XX and consider the operators A:KX,:C(+;X)C(+;Y)A:K\rightarrow X,\mathcal{R}:C\left(\mathbb{R}_{+};X\right)\rightarrow C\left(\mathbb{R}_{+};Y\right) as well as the functions φ:Y×K,f:+X\varphi:Y\times K\rightarrow\mathbb{R},f:\mathbb{R}_{+}\rightarrow X such that:
KK is a nonempty closed convex subset of XX.

 (a) There exists m>0 such that (Au1Au2,u1u2)Xmu1u2X2u1,u2K. (b) There exists M>0 such that Au1Au2XMu1u2Xu1,u2K.}\left.\begin{array}[]{l}\text{ (a) There exists }m>0\text{ such that }\\ \left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m\left\|u_{1}-u_{2}\right\|_{X}^{2}\quad\forall u_{1},u_{2}\in K.\\ \text{ (b) There exists }M>0\text{ such that }\\ \left\|Au_{1}-Au_{2}\right\|_{X}\leq M\left\|u_{1}-u_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in K.\end{array}\right\}
For every n there exists rn>0 such that\displaystyle\text{ For every }n\in\mathbb{N}^{*}\text{ there exists }r_{n}>0\text{ such that } (2.8)
u1(t)u2(t)Yrn0tu1(s)u2(s)X𝑑su1,u2C(+;X),t[0,n]}\displaystyle\left.\qquad\begin{array}[]{l}\left\|\mathcal{R}u_{1}(t)-\mathcal{R}u_{2}(t)\right\|_{Y}\leq r_{n}\int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{X}ds\\ \forall u_{1},u_{2}\in C\left(\mathbb{R}_{+};X\right),\forall t\in[0,n]\end{array}\right\}
 (a) The function φ(u,):K is convex and  lower semicontinuous, for all uY (b) There exists α0 such that φ(u1,v2)φ(u1,v1)+φ(u2,v1)φ(u2,v2)αu1u2Yv1v2Xu1,u2Y,v1,v2K}\left.\begin{array}[]{l}\text{ (a) The function }\varphi(u,\cdot):K\rightarrow\mathbb{R}\text{ is convex and }\\ \quad\text{ lower semicontinuous, for all }u\in Y\text{. }\\ \quad\text{ (b) There exists }\alpha\geq 0\text{ such that }\\ \quad\varphi\left(u_{1},v_{2}\right)-\varphi\left(u_{1},v_{1}\right)+\varphi\left(u_{2},v_{1}\right)-\varphi\left(u_{2},v_{2}\right)\\ \quad\leq\alpha\left\|u_{1}-u_{2}\right\|_{Y}\left\|v_{1}-v_{2}\right\|_{X}\quad\forall u_{1},u_{2}\in Y,\forall v_{1},v_{2}\in K\text{. }\end{array}\right\}

The following result, proved in [17], will be used in Section 4 of this paper.
Theorem 2.2 Assume that (2.6)-(2.10) hold. Then there exists a unique function uC(+;K)u\in C\left(\mathbb{R}_{+};K\right) such that, for all t+t\in\mathbb{R}_{+}, the inequality below holds:

(Au(t),vu(t))X+φ(u(t),v)φ(u(t),u(t))\displaystyle(Au(t),v-u(t))_{X}+\varphi(\mathcal{R}u(t),v)-\varphi(\mathcal{R}u(t),u(t)) (2.11)
(f(t),vu(t))XvK\displaystyle\geq(f(t),v-u(t))_{X}\quad\forall v\in K

Following the terminology introduced in [17] we refer to an operator which satisfies condition (2.8) as a history-dependent operator. Moreover, (2.11) represents a historydependent quasivariational inequality.

Finally, assume that XX and YY represent two real Hilbert spaces with the inner products (,)X(\cdot,\cdot)_{X} and (,)Y(\cdot,\cdot)_{Y}, and associated norms X\|\cdot\|_{X} and Y\|\cdot\|_{Y}, respectively. Then, we denote by X×YX\times Y the product of these spaces. We recall that X×YX\times Y is a real Hilbert space with the canonical inner product (,)X×Y(\cdot,\cdot)_{X\times Y} defined by

(z1,z2)X×Y=(x1,x2)X+(y1,y2)Yz1=(x1,y1),z2=(x2,y2)X×Y.\left(z_{1},z_{2}\right)_{X\times Y}=\left(x_{1},x_{2}\right)_{X}+\left(y_{1},y_{2}\right)_{Y}\quad\forall z_{1}=\left(x_{1},y_{1}\right),z_{2}=\left(x_{2},y_{2}\right)\in X\times Y.

The associated norm of the space X×YX\times Y, denoted X×Y\|\cdot\|_{X\times Y}, satisfies the inequality

zX×YxX+yY2zX×Yz=(x,y)X×Y\|z\|_{X\times Y}\leq\|x\|_{X}+\|y\|_{Y}\leq\sqrt{2}\|z\|_{X\times Y}\quad\forall z=(x,y)\in X\times Y

This inequality will be used several times in Sections 4 and 5 of this manuscript.

3 The model

The physical setting is as follows. A viscoplastic body occupies a bounded domain Ωd(d=1,2,3)\Omega\subset\mathbb{R}^{d}(d=1,2,3) with a Lipschitz continuous boundary Γ\Gamma, divided into three measurable parts Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3}, such that meas (Γ1)>0\left(\Gamma_{1}\right)>0. The body is subject to the action of body forces of density 𝒇0\boldsymbol{f}_{0}. We also assume that it is fixed on Γ1\Gamma_{1} and surface tractions of density 𝒇2\boldsymbol{f}_{2} act on Γ2\Gamma_{2}. On Γ3\Gamma_{3}, the body is in frictionless contact with a deformable obstacle, the so-called foundation. We assume that the contact process is quasistatic and we study it in the interval of time +=[0,)\mathbb{R}_{+}=[0,\infty). Then, the classical formulation of the contact problem we consider in this paper is the following.

Problem 𝒫\mathcal{P}. Find a displacement field 𝒖:Ω×+d\boldsymbol{u}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{d}, a stress field 𝝈:Ω×+𝕊d\boldsymbol{\sigma}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{S}^{d} and an internal state variable 𝜿:Ω×+m\boldsymbol{\kappa}:\Omega\times\mathbb{R}_{+}\rightarrow\mathbb{R}^{m} such that

𝝈˙(t)=ε(𝒖˙(t))+𝒢(𝝈(t),𝜺(𝒖(t)),𝜿(t)) in Ω,𝜿˙(t)=𝑮(𝝈(t),𝜺(𝒖(t)),𝜿(t)) in Ω,Div𝝈(t)+𝒇0(t)=𝟎 in Ω,𝒖(t)=𝟎 on Γ1,𝝈(t)𝝂=𝒇2(t) on Γ2,𝝈τ(t)=𝟎 on Γ3,\begin{array}[]{rll}\dot{\boldsymbol{\sigma}}(t)=\mathcal{E}\varepsilon(\dot{\boldsymbol{u}}(t))+\mathcal{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t))&\text{ in }&\Omega,\\ \dot{\boldsymbol{\kappa}}(t)=\boldsymbol{G}(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\kappa}(t))&\text{ in }&\Omega,\\ \operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0}&\text{ in }&\Omega,\\ \boldsymbol{u}(t)=\mathbf{0}&\text{ on }&\Gamma_{1},\\ \boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t)&\text{ on }&\Gamma_{2},\\ \boldsymbol{\sigma}_{\tau}(t)=\mathbf{0}&\text{ on }&\Gamma_{3},\end{array}

for all t+t\in\mathbb{R}_{+}, there exists ξ:Γ3×+\xi:\Gamma_{3}\times\mathbb{R}_{+}\rightarrow\mathbb{R} which satisfies

uν(t)g,σν(t)+p(uν(t))+ξ(t)0(uν(t)g)(σν(t)+p(uν(t))+ξ(t))=00ξ(t)0tb(ts)uν+(s)𝑑sξ(t)=0 if uν(t)<0ξ(t)=0tb(ts)uν+(s)𝑑s if uν(t)>0} on Γ3\left.\begin{array}[]{l}u_{\nu}(t)\leq g,\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\leq 0\\ \left(u_{\nu}(t)-g\right)\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)=0\\ 0\leq\xi(t)\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\\ \xi(t)=0\text{ if }u_{\nu}(t)<0\\ \xi(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\text{ if }u_{\nu}(t)>0\end{array}\right\}\quad\text{ on }\quad\Gamma_{3}

for all t+t\in\mathbb{R}_{+}and, moreover,

𝒖(0)=𝒖0,𝝈(0)=𝝈0,𝜿(0)=𝜿0 in Ω.\boldsymbol{u}(0)=\boldsymbol{u}_{0},\quad\boldsymbol{\sigma}(0)=\boldsymbol{\sigma}_{0},\quad\boldsymbol{\kappa}(0)=\boldsymbol{\kappa}_{0}\quad\text{ in }\quad\Omega. (3.8)

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions on the spatial variable 𝒙\boldsymbol{x}. Equations (3.1), (3.2) represent the rate-type viscoplastic constitutive law with internal state variable introduced in Section (1. Equation (3.3) represents the equation of equilibrium in which Div denotes the divergence operator for tensor valued functions. Conditions (3.4) and (3.5) are the displacement boundary condition and the traction boundary condition, respectively. Condition (3.6) is the frictionless condition and it shows that the tangential stress on the contact surface vanishes. Finally, (3.8) represents the initial conditions in which 𝒖0,𝝈0,𝜿0\boldsymbol{u}_{0},\boldsymbol{\sigma}_{0},\boldsymbol{\kappa}_{0} denote the initial displacement, the initial stress field and the initial state variable, respectively.

We now describe the contact condition (3.7) in which our main interest is. Here σν\sigma_{\nu} denotes the normal stress, uνu_{\nu} is the normal displacement and uν+u_{\nu}^{+}may be interpreted as the penetration of the body’s surface asperities and those of the foundation. Moreover, pp is a Lipschitz continuous increasing function which vanishes for a negative argument, bb is a positive function and g>0g>0. This condition can be derived in the following way. Let t+t\in\mathbb{R}_{+}be a given time moment. First, we assume that the penetration
is limited by the bound gg and, therefore, at each time moment t+t\in\mathbb{R}_{+}, the normal displacement satisfies the inequality

uν(t)g on Γ3.u_{\nu}(t)\leq g\quad\text{ on }\Gamma_{3}. (3.9)

Next, we assume that the normal stress has an additive decomposition of the form

σν(t)=σνD(t)+σνR(t)+σνM(t) on Γ3\sigma_{\nu}(t)=\sigma_{\nu}^{D}(t)+\sigma_{\nu}^{R}(t)+\sigma_{\nu}^{M}(t)\quad\text{ on }\Gamma_{3} (3.10)

in which the functions σνD(t),σνR(t)\sigma_{\nu}^{D}(t),\sigma_{\nu}^{R}(t) and σνM(t)\sigma_{\nu}^{M}(t) describe the deformability, the rigidity and the memory properties of the foundation. We assume that σνD(t)\sigma_{\nu}^{D}(t) satisfies a normal compliance contact condition, that is

σνD(t)=p(uν(t)) on Γ3.-\sigma_{\nu}^{D}(t)=p\left(u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}. (3.11)

The part σνR(t)\sigma_{\nu}^{R}(t) of the normal stress satisfies the Signorini condition in the form with a gap function, i.e.

σνR(t)0,σνR(t)(uν(t)g)=0 on Γ3.\sigma_{\nu}^{R}(t)\leq 0,\quad\sigma_{\nu}^{R}(t)\left(u_{\nu}(t)-g\right)=0\quad\text{ on }\Gamma_{3}. (3.12)

And, finally, the function σνM(t)\sigma_{\nu}^{M}(t) satisfies the condition

{|σνM(t)|0tb(ts)uν+(s)𝑑s,σνM(t)=0 if uν(t)<0σνM(t)=0tb(ts)uν+(s)𝑑s if uν(t)>0\left\{\begin{array}[]{l}\left|\sigma_{\nu}^{M}(t)\right|\leq\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\quad\sigma_{\nu}^{M}(t)=0\quad\text{ if }\quad u_{\nu}(t)<0\\ -\sigma_{\nu}^{M}(t)=\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\quad\text{ if }\quad u_{\nu}(t)>0\end{array}\right.

on Γ3\Gamma_{3}. We combine (3.10), (3.11) and denote σνM(t)=ξ(t)-\sigma_{\nu}^{M}(t)=\xi(t) to see that

σνR(t)=σν(t)+p(uν(t))+ξ(t) on Γ3\sigma_{\nu}^{R}(t)=\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\quad\text{ on }\Gamma_{3} (3.14)

Then we substitute equality (3.14) in (3.12) and use (3.9), (3.13) to obtain the contact condition (3.6).

We now present additional details of the contact condition (3.7). The inequalities and equalities below in this section are valid in an arbitrary point 𝒙Γ3\boldsymbol{x}\in\Gamma_{3}. First, we recall that (3.7) describes a condition with unilateral constraint, since inequality (3.9) holds at each time moment. Next, assume that at a given moment tt there is penetration which did not reach the bound gg, i.e. 0<uν(t)<g0<u_{\nu}(t)<g. Then (3.7) yields

σν(t)=p(uν(t))+0tb(ts)uν+(s)𝑑s-\sigma_{\nu}(t)=p\left(u_{\nu}(t)\right)+\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds (3.15)

This equality shows that at the moment tt, the reaction of the foundation depend both on the current value of the penetration (represented by the term p(uν(t))p\left(u_{\nu}(t)\right) ) as well as on the history of the penetration (represented by the integral term in (3.15)). Assume now that at a given moment tt there is separation between the body and the foundation, i.e. uν(t)<0u_{\nu}(t)<0. Then, since p(uν(t))=0p\left(u_{\nu}(t)\right)=0, (3.7) shows that σν(t)=0\sigma_{\nu}(t)=0,
i.e. the reaction of the foundation vanishes. Note that the same behavior of the normal stress is described both in the classical normal compliance condition and in the Signorini contact condition, when separation arises.

In conclusion, condition (3.7) shows that when there is separation then the normal stress vanishes; when there is penetration the contact follows a normal compliance condition with memory term of the form (3.15) but up to the limit gg and then, when this limit is reached, the contact follows a Signorini-type unilateral condition with the gap gg. For this reason we refer to this condition as to a normal compliance contact condition with unilateral constraint and memory term. It can be interpreted physically as follows. The foundation is assumed to be made of a hard material covered by a thin layer of a soft material with thickness gg. The soft material has a viscoelastic behaviour, i.e. is deformable, allows penetration and presents memory effects; the contact with this layer is modelled with normal compliance and memory term, as shown in equality (3.15). The hard material is perfectly rigid and, therefore, it does not allow penetration; the contact with this material is modelled with the Signorini contact condition. To resume, the foundation has a rigid-viscoelastic behavior; its viscoelastic behavior is given by the layer of the soft material while its rigid behavior is given by the hard material.

4 Existence and uniqueness

In this section we list the assumptions on the data, derive the variational formulation of the problem 𝒫\mathcal{P} and then we state and prove its unique weak solvability. To this end we assume that the elasticity tensor \mathcal{E} and the constitutive functions 𝒢\mathcal{G} and 𝑮\boldsymbol{G} satisfy the following conditions.

{ (a) =(ijkl):Ω×𝕊d𝕊d. (b) ijkl=klij=jiklL(Ω),1i,j,k,ld. (c) There exists m>0 such that 𝝉𝝉m𝝉2𝝉𝕊d, a.e. in Ω.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\Omega\times\mathbb{S}^{d}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) }\mathcal{E}_{ijkl}=\mathcal{E}_{klij}=\mathcal{E}_{jikl}\in L^{\infty}(\Omega),1\leq i,j,k,l\leq d.\\ \text{ (c) There exists }m_{\mathcal{E}}>0\text{ such that }\\ \mathcal{E}\boldsymbol{\tau}\cdot\boldsymbol{\tau}\geq m_{\mathcal{E}}\|\boldsymbol{\tau}\|^{2}\forall\boldsymbol{\tau}\in\mathbb{S}^{d},\text{ a.e. in }\Omega.\end{array}\right. (4.1)
{ (a) 𝒢:Ω×𝕊d×𝕊d×m𝕊d. (b) There exists L𝒢>0 such that 𝒢(𝒙,𝝈1,𝜺1,𝜿1)𝒢(𝒙,𝝈2,𝜺2,𝜿2)L𝒢(𝝈1𝝈2+𝜺1𝜺2+𝜿1𝜿2)𝝈1,𝝈2,𝜺1,𝜺2𝕊d,𝜿1,𝜿2m, a.e. 𝒙Ω. (c) The mapping 𝒙𝒢(𝒙,𝝈,𝜺,𝜿) is measurable on Ω, for any 𝝈,𝜺𝕊d and 𝜿m (d) The mapping 𝒙𝒢(𝒙,𝟎,𝟎,𝟎) belongs to Q.\displaystyle\left\{\begin{array}[]{l}\text{ (a) }\mathcal{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\times\mathbb{R}^{m}\rightarrow\mathbb{S}^{d}.\\ \text{ (b) There exists }L_{\mathcal{G}}>0\text{ such that }\\ \left\|\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1},\boldsymbol{\kappa}_{1}\right)-\mathcal{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2},\boldsymbol{\kappa}_{2}\right)\right\|\\ \quad\leq L_{\mathcal{G}}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|+\left\|\boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{2}\right\|\right)\\ \quad\forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\boldsymbol{\kappa}_{1},\boldsymbol{\kappa}_{2}\in\mathbb{R}^{m},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon},\boldsymbol{\kappa})\text{ is measurable on }\Omega,\\ \quad\text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{ and }\boldsymbol{\kappa}\in\mathbb{R}^{m}\text{. }\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\mathcal{G}(\boldsymbol{x},\mathbf{0},\mathbf{0},\mathbf{0})\text{ belongs to }Q.\end{array}\right. (4.2)
{ (a) 𝑮:Ω×𝕊d×𝕊d×mm. (b) There exists LG>0 such that 𝑮(𝒙,𝝈1,𝜺1,𝜿1)𝑮(𝒙,𝝈2,𝜺2,𝜿2)LG(𝝈1𝝈2+𝜺1𝜺2+𝜿1𝜿2)𝝈1,𝝈2,𝜺1,𝜺2𝕊d,𝜿1,𝜿2m, a.e. 𝒙Ω. (c) The mapping 𝒙𝑮(𝒙,𝝈,𝜺,𝜿) is measurable on Ω, for any 𝝈,𝜺𝕊d and 𝜿m. (d) The mapping 𝒙𝑮(𝒙,𝟎,𝟎,𝟎) belongs to L2(Ω)m\left\{\begin{array}[]{l}\text{ (a) }\boldsymbol{G}:\Omega\times\mathbb{S}^{d}\times\mathbb{S}^{d}\times\mathbb{R}^{m}\rightarrow\mathbb{R}^{m}.\\ \text{ (b) There exists }L_{G}>0\text{ such that }\\ \quad\left\|\boldsymbol{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{1},\boldsymbol{\varepsilon}_{1},\boldsymbol{\kappa}_{1}\right)-\boldsymbol{G}\left(\boldsymbol{x},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{2},\boldsymbol{\kappa}_{2}\right)\right\|\\ \quad\leq L_{G}\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|+\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|+\left\|\boldsymbol{\kappa}_{1}-\boldsymbol{\kappa}_{2}\right\|\right)\\ \quad\forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}_{1},\boldsymbol{\varepsilon}_{2}\in\mathbb{S}^{d},\boldsymbol{\kappa}_{1},\boldsymbol{\kappa}_{2}\in\mathbb{R}^{m},\text{ a.e. }\boldsymbol{x}\in\Omega.\\ \text{ (c) The mapping }\boldsymbol{x}\mapsto\boldsymbol{G}(\boldsymbol{x},\boldsymbol{\sigma},\boldsymbol{\varepsilon},\boldsymbol{\kappa})\text{ is measurable on }\Omega,\\ \quad\text{ for any }\boldsymbol{\sigma},\boldsymbol{\varepsilon}\in\mathbb{S}^{d}\text{ and }\boldsymbol{\kappa}\in\mathbb{R}^{m}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto\boldsymbol{G}(\boldsymbol{x},\mathbf{0},\mathbf{0},\mathbf{0})\text{ belongs to }L^{2}(\Omega)^{m}\text{. }\end{array}\right.

The densities of body forces and surface tractions are such that

𝒇0C(+;L2(Ω)d),𝒇2C(+;L2(Γ2)d)\boldsymbol{f}_{0}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right) (4.4)

and the normal compliance function pp satisfies

{ (a) p:Γ3×+.(b) There exists Lp>0 such that |p(𝒙,r1)p(𝒙,r2)|Lp|r1r2|r1,r2, a.e. 𝒙Γ3. (c) (p(𝒙,r1)p(𝒙,r2))(r1r2)0r1,r2, a.e. 𝒙Γ3. (d) The mapping 𝒙p(𝒙,r) is measurable on Γ3, for any r. (e) p(𝒙,r)=0 for all r0, a.e. 𝒙Γ3.\left\{\begin{array}[]{l}\text{ (a) }p:\Gamma_{3}\times\mathbb{R}\rightarrow\mathbb{R}_{+}.\\ \text{(b) There exists }L_{p}>0\text{ such that }\\ \quad\left|p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (c) }\left(p\left(\boldsymbol{x},r_{1}\right)-p\left(\boldsymbol{x},r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\\ \quad\forall r_{1},r_{2}\in\mathbb{R},\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\\ \text{ (d) The mapping }\boldsymbol{x}\mapsto p(\boldsymbol{x},r)\text{ is measurable on }\Gamma_{3},\\ \quad\text{ for any }r\in\mathbb{R}.\\ \text{ (e) }p(\boldsymbol{x},r)=0\text{ for all }r\leq 0,\text{ a.e. }\boldsymbol{x}\in\Gamma_{3}.\end{array}\right.

Also, the surface memory function and the initial data verify

bC(+;L(Γ3)),b(t,𝒙)0 for all t+,a.e. 𝒙Γ3𝒖0U,𝝈0Q,𝜿0L2(Ω)m\begin{array}[]{cl}b\in C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right),\quad b(t,\boldsymbol{x})\geq 0&\text{ for all }t\in\mathbb{R}_{+},\text{a.e. }\boldsymbol{x}\in\Gamma_{3}\\ \boldsymbol{u}_{0}\in U,\quad\boldsymbol{\sigma}_{0}\in Q,\quad\boldsymbol{\kappa}_{0}\in L^{2}(\Omega)^{m}\end{array}

where UU denotes the set of admissible displacements defined by

U={𝒗V:vνg on Γ3}U=\left\{\boldsymbol{v}\in V:v_{\nu}\leq g\text{ on }\Gamma_{3}\right\} (4.8)

Assume in what follows that ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) are sufficiently regular functions which satisfy (3.1)-(3.8) and let 𝒗U\boldsymbol{v}\in U and t>0t>0 be given. First, we integrate equations (3.1), (3.2) with the initial conditions (3.8) to obtain

𝝈(t)=0t𝒢(𝝈(s),𝜺(𝒖(s)),𝜿(s))𝑑s+𝝈0𝜺(𝒖0)+𝜺(𝒖(t))\boldsymbol{\sigma}(t)=\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)) (4.9)

and

𝜿(t)=0t𝑮(𝝈(s),𝜺(𝒖(s)),𝜿(s))𝑑s+𝜿0\boldsymbol{\kappa}(t)=\int_{0}^{t}\boldsymbol{G}(\boldsymbol{\sigma}(s),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\kappa}_{0} (4.10)

Next, we use Green formula (2.2) and the equilibrium equation (3.3) to see that

Ω𝝈(t)(ε(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x+Γ𝝈(t)𝝂(𝒗𝒖(t))𝑑a\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\varepsilon(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

We split the surface integral over Γ1,Γ2\Gamma_{1},\Gamma_{2} and Γ3\Gamma_{3} and, since 𝒗𝒖(t)=𝟎\boldsymbol{v}-\boldsymbol{u}(t)=\mathbf{0} a.e. on Γ1\Gamma_{1}, 𝝈(t)𝝂=𝒇2(t)\boldsymbol{\sigma}(t)\boldsymbol{\nu}=\boldsymbol{f}_{2}(t) on Γ2\Gamma_{2}, we deduce that

Ω𝝈(t)(𝜺(𝒗)𝜺(𝒖(t)))𝑑x=Ω𝒇0(t)(𝒗𝒖(t))𝑑x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx
+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a+Γ3𝝈(t)𝝂(𝒗𝒖(t))𝑑a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da

Moreover, since

𝝈(t)𝝂(𝒗𝒖(t))=σν(t)(vνuν(t))+𝝈τ(t)(𝒗τ𝒖τ(t)) on Γ3,\boldsymbol{\sigma}(t)\boldsymbol{\nu}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))=\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)+\boldsymbol{\sigma}_{\tau}(t)\cdot\left(\boldsymbol{v}_{\tau}-\boldsymbol{u}_{\tau}(t)\right)\quad\text{ on }\Gamma_{3},

taking into account the frictionless condition (3.6) we obtain

Ω𝝈\displaystyle\int_{\Omega}\boldsymbol{\sigma} (t)(𝜺(𝒗)𝜺(𝒖(t)))dx=Ω𝒇0(t)(𝒗𝒖(t))𝑑x\displaystyle(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx (4.11)
+Γ2𝒇2(t)(𝒗𝒖(t))𝑑a+Γ3σν(t)(vνuν(t))𝑑a\displaystyle+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da

We write now

σν(t)(vνuν(t))=(σν(t)+p(uν(t))+ξ(t))(vνg)\displaystyle\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)=\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-g\right)
+(σν(t)+p(uν(t))+ξ(t))(guν(t))\displaystyle\quad+\left(\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(g-u_{\nu}(t)\right)
(p(uν(t))+ξ(t))(vνuν(t)) on Γ3\displaystyle\quad-\left(p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3}

then we use the contact conditions (3.7) and the definition (4.8) of the set UU to see that

σν(t)(vνuν(t))(p(uν(t))+ξ(t))(vνuν(t)) on Γ3\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)\geq-\left(p\left(u_{\nu}(t)\right)+\xi(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (4.12)

We use (3.7), again, and the hypothesis (4.6) on function bb to deduce that

(0tb(ts)uν+(s)𝑑s)(vν+uν+(t))ξ(t)(vνuν(t)) on Γ3\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds\right)\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)\geq\xi(t)\left(v_{\nu}-u_{\nu}(t)\right)\quad\text{ on }\Gamma_{3} (4.13)

Then we add the inequalities (4.12) and (4.13) and integrate the result on Γ3\Gamma_{3} to find that

Γ3σν(t)(vνuν(t))𝑑a\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da (4.14)
(p(uν(t)),vνuν(t))L2(Γ3)(0tb(ts)uν+(s)𝑑s,vν+uν+(t))L2(Γ3)\displaystyle\quad\geq-\left(p\left(u_{\nu}(t)\right),v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}-\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}

Finally, we combine (4.11) and (4.14) to deduce that

(𝝈(t),𝜺(𝒗)𝜺(𝒖(t)))Q+(p(uν(t)),vνuν(t))L2(Γ3)\displaystyle(\boldsymbol{\sigma}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(p\left(u_{\nu}(t)\right),v_{\nu}-u_{\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (4.15)
+(0tb(ts)uν+(s)𝑑s,vν+uν+(t))L2(Γ3)\displaystyle\quad+\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇0(t),𝒗𝒖(t))L2(Ω)d+(𝒇2(t),𝒗𝒖(t))L2(Γ2)d𝒗U\displaystyle\quad\geq\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}-\boldsymbol{u}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in U

We gather the results above to obtain the following variational formulation of Problem 𝒫\mathcal{P}.

Problem 𝒫V\mathcal{P}^{V}. Find a displacement field 𝒖:+U\boldsymbol{u}:\mathbb{R}_{+}\rightarrow U, a stress field 𝝈:+Q\boldsymbol{\sigma}:\mathbb{R}_{+}\rightarrow Q and an internal state variable 𝜿:+L2(Ω)m\boldsymbol{\kappa}:\mathbb{R}_{+}\rightarrow L^{2}(\Omega)^{m} such that (4.9), (4.10) and (4.15) hold, for all t+t\in\mathbb{R}_{+}.

In the study of the problem 𝒫V\mathcal{P}^{V} we have the following existence and uniqueness result.

Theorem 4.1 Assume that (4.1) -(4.7) hold. Then, Problem 𝒫V\mathcal{P}^{V} has a unique solution which satisfies

𝒖C(+;U),𝝈C(+;Q) and 𝜿C(+;L2(Ω)m).\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right),\quad\boldsymbol{\sigma}\in C\left(\mathbb{R}_{+};Q\right)\quad\text{ and }\quad\boldsymbol{\kappa}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{m}\right). (4.16)

We now turn to the proof of the theorem. We start with the following existence and uniqueness result.

Lemma 4.2 Assume that (4.1) -(4.3) and (4.7) hold. Then, for each 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) there exists a unique function 𝒮𝒖=(𝒮1𝒖,𝒮2𝒖)C(+;Q×L2(Ω)m)\mathcal{S}\boldsymbol{u}=\left(\mathcal{S}_{1}\boldsymbol{u},\mathcal{S}_{2}\boldsymbol{u}\right)\in C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) such that

𝒮1𝒖(t)=0t𝒢(𝒮1𝒖(s)+ε(𝒖(s)),𝜺(𝒖(s)),𝒮2𝒖(s))𝑑s+𝝈0ε(𝒖0)\displaystyle\mathcal{S}_{1}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\varepsilon(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\varepsilon\left(\boldsymbol{u}_{0}\right) (4.17)
𝒮2𝒖(t)=0t𝑮(𝒮1𝒖(s)+ε(𝒖(s)),𝜺(𝒖(s)),𝒮2𝒖(s))𝑑s+𝜿0\displaystyle\mathcal{S}_{2}\boldsymbol{u}(t)=\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\varepsilon(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds+\boldsymbol{\kappa}_{0} (4.18)

for all t+t\in\mathbb{R}_{+}. Moreover, the operator 𝒮:C(+;V)C(+;Q×L2(Ω)m)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) is a history-dependent operator, i.e. it satisfies the following property: for every nn\in\mathbb{N}^{*} there exists sn>0s_{n}>0 which depends only on n,d,𝒢,𝑮n,d,\mathcal{G},\boldsymbol{G} and \mathcal{E}, such that

𝒮𝒖(t)𝒮𝒗(t)Q×L2(Ω)msn0t𝒖(s)𝒗(s)V𝑑s\displaystyle\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{Q\times L^{2}(\Omega)^{m}}\leq s_{n}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds (4.19)
𝒖,𝒗C(+;V)t[0,n]\displaystyle\forall\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right)\quad\forall t\in[0,n]

Proof. Let 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right). We consider the operator Λ:C(+;Q×L2(Ω)m)C(+;Q×L2(Ω)m)\Lambda:C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) defined by

Λ𝝉(t)=(Λ1𝝉(t),Λ2𝝉(t))\displaystyle\Lambda\boldsymbol{\tau}(t)=\left(\Lambda_{1}\boldsymbol{\tau}(t),\Lambda_{2}\boldsymbol{\tau}(t)\right) (4.20)
Λ1𝝉(t)=0t𝒢(𝜶(s)+𝜺(𝒖(s)),𝜺(𝒖(s)),𝜷(s))𝑑s+𝝈0𝜺(𝒖0)\displaystyle\Lambda_{1}\boldsymbol{\tau}(t)=\int_{0}^{t}\mathcal{G}(\boldsymbol{\alpha}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\beta}(s))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right) (4.21)
Λ2𝝉(t)=0t𝑮(𝜶(s)+𝜺(𝒖(s)),𝜺(𝒖(s)),𝜷(s))𝑑s+𝜿0\displaystyle\Lambda_{2}\boldsymbol{\tau}(t)=\int_{0}^{t}\boldsymbol{G}(\boldsymbol{\alpha}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\beta}(s))ds+\boldsymbol{\kappa}_{0} (4.22)

for all 𝝉=(𝜶,𝜷)C(+;Q×L2(Ω)m)\boldsymbol{\tau}=(\boldsymbol{\alpha},\boldsymbol{\beta})\in C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) and t+t\in\mathbb{R}_{+}. Note that the operator Λ\Lambda depends on 𝒖\boldsymbol{u} but, for simplicity, we do not indicate explicitly this dependence.

Let 𝝉1=(𝜶1,𝜷1),𝝉2=(𝜶2,𝜷2)C(+;Q×L2(Ω)m)\boldsymbol{\tau}_{1}=\left(\boldsymbol{\alpha}_{1},\boldsymbol{\beta}_{1}\right),\boldsymbol{\tau}_{2}=\left(\boldsymbol{\alpha}_{2},\boldsymbol{\beta}_{2}\right)\in C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) and let t+t\in\mathbb{R}_{+}. Then, using definition (4.20)-(4.22) and assumptions (4.2), (4.3), we deduce that

Λ𝝉1(t)Λ𝝉2(t)Q×L2(Ω)m\displaystyle\left\|\Lambda\boldsymbol{\tau}_{1}(t)-\Lambda\boldsymbol{\tau}_{2}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}
(L𝒢+LG)0t(𝜶1(s)𝜶2(s)Q+𝜷1(s)𝜷2(s)L2(Ω)m)𝑑s\displaystyle\quad\leq\left(L_{\mathcal{G}}+L_{G}\right)\int_{0}^{t}\left(\left\|\boldsymbol{\alpha}_{1}(s)-\boldsymbol{\alpha}_{2}(s)\right\|_{Q}+\left\|\boldsymbol{\beta}_{1}(s)-\boldsymbol{\beta}_{2}(s)\right\|_{L^{2}(\Omega)^{m}}\right)ds
=2(L𝒢+LG)0t𝝉1(s)𝝉2(s)Q×L2(Ω)m𝑑s\displaystyle\quad=\sqrt{2}\left(L_{\mathcal{G}}+L_{G}\right)\int_{0}^{t}\left\|\boldsymbol{\tau}_{1}(s)-\boldsymbol{\tau}_{2}(s)\right\|_{Q\times L^{2}(\Omega)^{m}}ds

This inequality combined with Theorem 2.1 shows that the operator Λ\Lambda has a unique fixed point in C(+;Q×L2(Ω)m)C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right), denoted 𝒮𝒖=(𝒮1𝒖,𝒮2𝒖)\mathcal{S}\boldsymbol{u}=\left(\mathcal{S}_{1}\boldsymbol{u},\mathcal{S}_{2}\boldsymbol{u}\right). Moreover, combining (4.20)-(4.22) with equality Λ(𝒮𝒖)=𝒮𝒖\Lambda(\mathcal{S}\boldsymbol{u})=\mathcal{S}\boldsymbol{u} we deduce that (4.17)-(4.18) hold.

To proceed, let 𝒖,𝒗C(+;V),n\boldsymbol{u},\boldsymbol{v}\in C\left(\mathbb{R}_{+};V\right),n\in\mathbb{N}^{*} and let t[0,n]t\in[0,n]. Then using (4.17)(4.18) and taking into account (4.1)-(4.3) and (2.3) we obtain that

𝒮1𝒖(t)\displaystyle\|\mathcal{S}_{1}\boldsymbol{u}(t)- 𝒮1𝒗(t)=Q0t𝒢(𝒮1𝒖(s)+𝜺(𝒖(s)),𝜺(𝒖(s)),𝒮2𝒖(s))ds\displaystyle\mathcal{S}_{1}\boldsymbol{v}(t)\left\|{}_{Q}=\right\|\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds
0t𝒢(𝒮1𝒗(s)+𝜺(𝒗(s)),𝜺(𝒗(s)),𝒮2𝒗(s))𝑑sQ\displaystyle\quad-\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1}\boldsymbol{v}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\mathcal{S}_{2}\boldsymbol{v}(s)\right)ds\|_{Q}
\displaystyle\leq L𝒢0t(𝒮1𝒖(s)𝒮1𝒗(s)Q+𝒮2𝒖(s)𝒮2𝒗(s)L2(Ω)m)𝑑s\displaystyle L_{\mathcal{G}}\int_{0}^{t}\left(\left\|\mathcal{S}_{1}\boldsymbol{u}(s)-\mathcal{S}_{1}\boldsymbol{v}(s)\right\|_{Q}+\left\|\mathcal{S}_{2}\boldsymbol{u}(s)-\mathcal{S}_{2}\boldsymbol{v}(s)\right\|_{L^{2}(\Omega)^{m}}\right)ds
+L𝒢(d𝐐+1)0t𝜺(𝒖(s))𝜺(𝒗(s))Q𝑑s\displaystyle\quad+L_{\mathcal{G}}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{\varepsilon}(\boldsymbol{u}(s))-\boldsymbol{\varepsilon}(\boldsymbol{v}(s))\|_{Q}ds
\displaystyle\leq 2L𝒢0t𝒮𝒖(s)𝒮𝒗(s)Q×L2(Ω)m𝑑s\displaystyle\sqrt{2}L_{\mathcal{G}}\int_{0}^{t}\|\mathcal{S}\boldsymbol{u}(s)-\mathcal{S}\boldsymbol{v}(s)\|_{Q\times L^{2}(\Omega)^{m}}ds
+L𝒢(d𝐐+1)0t𝒖(s)𝒗(s)V𝑑s\displaystyle\quad+L_{\mathcal{G}}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds
𝒮2𝒖(t)\displaystyle\|\mathcal{S}_{2}\boldsymbol{u}(t)- 𝒮2𝒗(t)=L2(Ω)m0t𝑮(𝒮1𝒖(s)+𝜺(𝒖(s)),𝜺(𝒖(s)),𝒮2𝒖(s))ds\displaystyle\mathcal{S}_{2}\boldsymbol{v}(t)\left\|{}_{L^{2}(\Omega)^{m}}=\right\|\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2}\boldsymbol{u}(s)\right)ds
0t𝑮(𝒮1𝒗(s)+𝜺(𝒗(s)),𝜺(𝒗(s)),𝒮2𝒗(s))𝑑sL2(Ω)m\displaystyle\quad-\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1}\boldsymbol{v}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\boldsymbol{\varepsilon}(\boldsymbol{v}(s)),\mathcal{S}_{2}\boldsymbol{v}(s)\right)ds\|_{L^{2}(\Omega)^{m}}
\displaystyle\leq LG0t(𝒮1𝒖(s)𝒮1𝒗(s)Q+𝒮2𝒖(s)𝒮2𝒗(s)L2(Ω)m)𝑑s\displaystyle L_{G}\int_{0}^{t}\left(\left\|\mathcal{S}_{1}\boldsymbol{u}(s)-\mathcal{S}_{1}\boldsymbol{v}(s)\right\|_{Q}+\left\|\mathcal{S}_{2}\boldsymbol{u}(s)-\mathcal{S}_{2}\boldsymbol{v}(s)\right\|_{L^{2}(\Omega)^{m}}\right)ds
+LG(d𝐐+1)0t𝜺(𝒖(s))𝜺(𝒗(s))Q𝑑s\displaystyle\quad+L_{G}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{\varepsilon}(\boldsymbol{u}(s))-\boldsymbol{\varepsilon}(\boldsymbol{v}(s))\|_{Q}ds
\displaystyle\leq 2LG0t𝒮𝒖(s)𝒮𝒗(s)Q×L2(Ω)m𝑑s\displaystyle\sqrt{2}L_{G}\int_{0}^{t}\|\mathcal{S}\boldsymbol{u}(s)-\mathcal{S}\boldsymbol{v}(s)\|_{Q\times L^{2}(\Omega)^{m}}ds
+LG(d𝐐+1)0t𝒖(s)𝒗(s)V𝑑s\displaystyle\quad+L_{G}\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds

Therefore, we have

𝒮𝒖(t)𝒮𝒗(t)Q×L2(Ω)m𝒮1𝒖(t)𝒮1𝒗(t)Q+𝒮2𝒖(t)𝒮2𝒗(t)L2(Ω)m\displaystyle\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{Q\times L^{2}(\Omega)^{m}}\leq\left\|\mathcal{S}_{1}\boldsymbol{u}(t)-\mathcal{S}_{1}\boldsymbol{v}(t)\right\|_{Q}+\left\|\mathcal{S}_{2}\boldsymbol{u}(t)-\mathcal{S}_{2}\boldsymbol{v}(t)\right\|_{L^{2}(\Omega)^{m}}
𝒦(0t𝒮𝒖(s)𝒮𝒗(s)Q×L2(Ω)m𝑑s+0t𝒖(s)𝒗(s)V𝑑s)\displaystyle\quad\leq\mathcal{K}\left(\int_{0}^{t}\|\mathcal{S}\boldsymbol{u}(s)-\mathcal{S}\boldsymbol{v}(s)\|_{Q\times L^{2}(\Omega)^{m}}ds+\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds\right)

where

𝒦=max{2(L𝒢+LG),(L𝒢+LG)(d𝐐+1)}.\mathcal{K}=\max\left\{\sqrt{2}\left(L_{\mathcal{G}}+L_{G}\right),\left(L_{\mathcal{G}}+L_{G}\right)\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+1\right)\right\}. (4.23)

Using now a Gronwall argument we deduce that

𝒮𝒖(t)𝒮𝒗(t)Q×L2(Ω)m𝒦en𝒦0t𝒖(s)𝒗(s)V𝑑s\|\mathcal{S}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{v}(t)\|_{Q\times L^{2}(\Omega)^{m}}\leq\mathcal{K}e^{n\mathcal{K}}\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds (4.24)

This inequality shows that inequality (4.19) holds with sn=𝒦en𝒦s_{n}=\mathcal{K}e^{n\mathcal{K}}, which concludes the proof.

Next, using the Riesz representation Theorem we define the operators P:VVP:V\rightarrow V, :C(+;V)C(+;L2(Γ3))\mathcal{B}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) and the function 𝒇:+V\boldsymbol{f}:\mathbb{R}_{+}\rightarrow V by equalities

(P𝒖,𝒗)V=Γ3p(uν)vν𝑑a𝒖,𝒗V\displaystyle(P\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Gamma_{3}}p\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.25)
(𝒖(t),ξ)L2(Γ3)=(0tb(ts)uν+(s)𝑑s,ξ)L2(Γ3)\displaystyle(\mathcal{B}\boldsymbol{u}(t),\xi)_{L^{2}\left(\Gamma_{3}\right)}=\left(\int_{0}^{t}b(t-s)u_{\nu}^{+}(s)ds,\xi\right)_{L^{2}\left(\Gamma_{3}\right)} (4.26)
𝒖C(+;V),ξL2(Γ3),t+\displaystyle\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\xi\in L^{2}\left(\Gamma_{3}\right),t\in\mathbb{R}_{+}
(𝒇(t),𝒗)V=Ω𝒇0(t)𝒗𝑑x+Γ2𝒇2(t)𝒗𝑑a𝒗V,t+\displaystyle(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (4.27)

We use the operator 𝒮:C(+;V)C(+;Q×L2(Ω)m)\mathcal{S}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) defined in Lemma 4.2 to obtain the following equivalence result.

Lemma 4.3 Let ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) be a triple of functions which satisfy (4.16). Then (u, 𝝈,𝜿\boldsymbol{\sigma},\boldsymbol{\kappa} ) is a solution of 𝒫V\mathcal{P}^{V} if and only if

𝝈(t)=𝜺(𝒖(t))+𝒮1(𝒖(t))\displaystyle\boldsymbol{\sigma}(t)=\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\mathcal{S}_{1}(\boldsymbol{u}(t)) (4.28)
𝜿(t)=𝒮2𝒖(t)\displaystyle\boldsymbol{\kappa}(t)=\mathcal{S}_{2}\boldsymbol{u}(t) (4.29)
(𝜺(𝒖(t)),𝜺(𝒗)𝜺(𝒖(t)))Q+(𝒮1𝒖(t),𝜺(𝒗)𝜺(𝒖(t)))Q\displaystyle(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q} (4.30)
+(P𝒖(t),𝒗𝒖(t))V+(𝒖(t),vν+uν+(t))L2(Γ3)\displaystyle\quad+(P\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+\left(\mathcal{B}\boldsymbol{u}(t),v_{\nu}^{+}-u_{\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇(t),𝒗𝒖(t))V,𝒗U\displaystyle\quad\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V},\quad\forall\boldsymbol{v}\in U

for all t+t\in\mathbb{R}_{+}.
Proof. First we suppose that ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) is solution for Problem 𝒫V\mathcal{P}^{V} and let t+t\in\mathbb{R}_{+}. Using (4.9) and (4.10) we obtain

𝝈(t)\displaystyle\boldsymbol{\sigma}(t) 𝜺(𝒖(t))\displaystyle-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)) (4.31)
=0t𝒢(𝝈(s)𝜺(𝒖(s))+𝜺(𝒖(s)),𝜺(𝒖(s)),𝜿(s))𝑑s+𝝈0𝜺(𝒖0)\displaystyle=\int_{0}^{t}\mathcal{G}(\boldsymbol{\sigma}(s)-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s))+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\sigma}_{0}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0}\right)
𝜿(t)\displaystyle\boldsymbol{\kappa}(t) =0t𝑮(𝝈(s)𝜺(𝒖(s))+𝜺(𝒖(s)),𝜺(𝒖(s)),𝜿(s))𝑑s+𝜿0\displaystyle=\int_{0}^{t}\boldsymbol{G}(\boldsymbol{\sigma}(s)-\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s))+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\kappa}(s))ds+\boldsymbol{\kappa}_{0} (4.32)

We now use the definitions of 𝒮1\mathcal{S}_{1} and 𝒮2\mathcal{S}_{2} in Lemma 4.2 to obtain (4.28) and (4.29). Then we combine (4.15), (4.28) and use notation (4.25)-(4.27) to see that (4.30) holds.

Conversely, assume that ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) satisfies (4.28)-(4.30) and let t+t\in\mathbb{R}_{+}. We use (4.28), (4.29) and the definitions (4.17), (4.18) of the operators 𝒮1\mathcal{S}_{1} and 𝒮2\mathcal{S}_{2} to obtain (4.31) and (4.32), which show that (4.9) and (4.10) hold. Moreover, using (4.28), (4.30) and the definitions (4.25)-(4.27) we find (4.15), which concludes the proof.

We are now in position to provide the proof for Theorem 4.1.
Proof. We first define the operators A:VV,:C(+;V)C(+;Q×L2(Γ3))A:V\rightarrow V,\mathcal{R}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}\left(\Gamma_{3}\right)\right) and the functional φ:Q×L2(Γ3)×V\varphi:Q\times L^{2}\left(\Gamma_{3}\right)\times V\rightarrow\mathbb{R} by equalities

(A𝒖,𝒗)=(ε(𝒖),𝜺(𝒗))Q+(P𝒖,𝒗)V𝒖,𝒗V\displaystyle(A\boldsymbol{u},\boldsymbol{v})=(\mathcal{E}\varepsilon(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+(P\boldsymbol{u},\boldsymbol{v})_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (4.33)
𝒖(t)=(𝒮1𝒖(t),𝒖(t))𝒖C(+;V)\displaystyle\mathcal{R}\boldsymbol{u}(t)=\left(\mathcal{S}_{1}\boldsymbol{u}(t),\mathcal{B}\boldsymbol{u}(t)\right)\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) (4.34)
φ(𝝈,ξ,𝒗)=(𝝈,𝜺(𝒗))Q+(ξ+,vν+)L2(Γ3)𝝈Q,ξL2(Γ3),𝒗V\displaystyle\varphi(\boldsymbol{\sigma},\xi,\boldsymbol{v})=(\boldsymbol{\sigma},\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\left(\xi^{+},v_{\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)}\quad\forall\boldsymbol{\sigma}\in Q,\xi\in L^{2}\left(\Gamma_{3}\right),\boldsymbol{v}\in V (4.35)

With these notation we consider the problem of finding a function 𝒖:+V\boldsymbol{u}:\mathbb{R}_{+}\rightarrow V such that, for all t+t\in\mathbb{R}_{+}, the following inequality holds:

𝒖(t)U,(A𝒖(t),𝒗𝒖(t))V+φ(𝒖(t),𝒗)φ(𝒖(t),𝒖(t))\displaystyle\boldsymbol{u}(t)\in U,\quad(A\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+\varphi(\mathcal{R}\boldsymbol{u}(t),\boldsymbol{v})-\varphi(\mathcal{R}\boldsymbol{u}(t),\boldsymbol{u}(t)) (4.36)
(𝒇,𝒗𝒖(t))V𝒗U\displaystyle\geq(\boldsymbol{f},\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\forall\boldsymbol{v}\in U

In order to solve (4.36) we employ Theorem 2.2 with X=V,K=UX=V,K=U and Y=Q×L2(Γ3)Y=Q\times L^{2}\left(\Gamma_{3}\right). To this end we use the definition (4.33) and inequalities (2.1), (2.3) to obtain that

|(A𝒖A𝒗,𝒘)V||(ε(𝒖)ε(𝒗),𝜺(𝒘))Q|+|(P𝒖P𝒗,𝒘)V|d𝐐𝒖𝒗V𝒘V+Lp𝒘L2(Γ3)d𝒖𝒗L2(Γ3)d(d𝐐+c02Lp)𝒖𝒗V𝒘V𝒖,𝒗,𝒘V.\begin{gathered}\left|(A\boldsymbol{u}-A\boldsymbol{v},\boldsymbol{w})_{V}\right|\leq\left|(\mathcal{E}\varepsilon(\boldsymbol{u})-\mathcal{E}\varepsilon(\boldsymbol{v}),\boldsymbol{\varepsilon}(\boldsymbol{w}))_{Q}\right|+\left|(P\boldsymbol{u}-P\boldsymbol{v},\boldsymbol{w})_{V}\right|\\ \leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\|\boldsymbol{w}\|_{V}+L_{p}\|\boldsymbol{w}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\|\boldsymbol{u}-\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\\ \leq\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}L_{p}\right)\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\|\boldsymbol{w}\|_{V}\quad\forall\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}\in V.\end{gathered}

Then we take 𝒘=A𝒖A𝒗\boldsymbol{w}=A\boldsymbol{u}-A\boldsymbol{v} in the previous inequality to find that

A𝒖A𝒗V(d𝐐+c02Lp)𝒖𝒗V𝒖,𝒗V.\|A\boldsymbol{u}-A\boldsymbol{v}\|_{V}\leq\left(d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}+c_{0}^{2}L_{p}\right)\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\quad\forall\boldsymbol{u},\boldsymbol{v}\in V. (4.37)

On the other hand, from (4.1) and the monotonicity of the function pp we deduce that

(A𝒖A𝒗,𝒖𝒗)Vmε𝒖𝒗V2.(A\boldsymbol{u}-A\boldsymbol{v},\boldsymbol{u}-\boldsymbol{v})_{V}\geq m_{\varepsilon}\|\boldsymbol{u}-\boldsymbol{v}\|_{V}^{2}. (4.38)

Inequalities (4.37) and (4.38) imply that the operator AA satisfies assumption (2.7).
Let nn\in\mathbb{N}^{*} and let t[0,n]t\in[0,n]. Then, using (4.34), (4.19) and the trace inequality (2.1) we find that

𝒖(t)𝒗(t)Q×L2(Γ3)\displaystyle\|\mathcal{R}\boldsymbol{u}(t)-\mathcal{R}\boldsymbol{v}(t)\|_{Q\times L^{2}\left(\Gamma_{3}\right)}
(sn+c0maxr[0,n]b(r)L(Γ3))0t𝒖(s)𝒗(s)V𝑑s\displaystyle\quad\leq\left(s_{n}+c_{0}\cdot\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)}\right)\int_{0}^{t}\|\boldsymbol{u}(s)-\boldsymbol{v}(s)\|_{V}ds

which shows that (2.8) holds with rn=sn+c0maxr[0,n]b(r)L(Γ3)r_{n}=s_{n}+c_{0}\cdot\max_{r\in[0,n]}\|b(r)\|_{L^{\infty}\left(\Gamma_{3}\right)}.
We now take into account (4.35) and (2.1) to deduce that

φ((𝝈1,ξ1),𝒖2)φ((𝝈1,ξ1),𝒖1)+φ((𝝈2,ξ2),𝒖1)φ((𝝈2,ξ2),𝒖2)=(𝝈1𝝈2,𝜺(𝒖2)𝜺(𝒖1))Q+(ξ1+ξ2+,u2ν+u1ν+)L2(Γ3)(𝝈1𝝈2Q+c0ξ1ξ2L2(Γ3))𝒖1𝒖2V2max{1,c0}(𝝈1,ξ1)(𝝈2,ξ2)Q×L2(Γ3)𝒖1𝒖2V,𝝈1,𝝈1Q,ξ1,ξ2L2(Γ3),𝒖1,𝒖2V,\begin{gathered}\varphi\left(\left(\boldsymbol{\sigma}_{1},\xi_{1}\right),\boldsymbol{u}_{2}\right)-\varphi\left(\left(\boldsymbol{\sigma}_{1},\xi_{1}\right),\boldsymbol{u}_{1}\right)+\varphi\left(\left(\boldsymbol{\sigma}_{2},\xi_{2}\right),\boldsymbol{u}_{1}\right)-\varphi\left(\left(\boldsymbol{\sigma}_{2},\xi_{2}\right),\boldsymbol{u}_{2}\right)\\ =\left(\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2},\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{2}\right)-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{1}\right)\right)_{Q}+\left(\xi_{1}^{+}-\xi_{2}^{+},u_{2\nu}^{+}-u_{1\nu}^{+}\right)_{L^{2}\left(\Gamma_{3}\right)}\\ \leq\left(\left\|\boldsymbol{\sigma}_{1}-\boldsymbol{\sigma}_{2}\right\|_{Q}+c_{0}\left\|\xi_{1}-\xi_{2}\right\|_{L^{2}\left(\Gamma_{3}\right)}\right)\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V}\\ \leq\sqrt{2}\max\left\{1,c_{0}\right\}\left\|\left(\boldsymbol{\sigma}_{1},\xi_{1}\right)-\left(\boldsymbol{\sigma}_{2},\xi_{2}\right)\right\|_{Q\times L^{2}\left(\Gamma_{3}\right)}\left\|\boldsymbol{u}_{1}-\boldsymbol{u}_{2}\right\|_{V},\\ \forall\boldsymbol{\sigma}_{1},\boldsymbol{\sigma}_{1}\in Q,\xi_{1},\xi_{2}\in L^{2}\left(\Gamma_{3}\right),\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in V,\end{gathered}

which shows that (2.9) (b) holds with α=2max{1,c0}\alpha=\sqrt{2}\max\left\{1,c_{0}\right\}. In addition, we note that the function φ((𝝈,ξ),):V\varphi((\boldsymbol{\sigma},\xi),\cdot):V\rightarrow\mathbb{R} is convex and lower semi-continuous for all (𝝈,ξ)Q×L2(Γ3)(\boldsymbol{\sigma},\xi)\in Q\times L^{2}\left(\Gamma_{3}\right) and, therefore, (2.9) (a) holds, too.

Finally, using assumption (4.4) and definition (4.27) we deduce that 𝒇\boldsymbol{f} has the regularity expressed in (2.10). It follows now from Theorem 2.2 that there exists a unique function 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) which solves the inequality (4.36). And, using notation (4.33)-(4.35), we deduce the existence of a unique function 𝒖C(+;U)\boldsymbol{u}\in C\left(\mathbb{R}_{+};U\right)
which satisfies (4.30) for any t+t\in\mathbb{R}_{+}. Let 𝝈,𝜿\boldsymbol{\sigma},\boldsymbol{\kappa} be the functions defined by (4.28) and (4.29). Then, it follows that the triple ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) is the unique triple of functions with regularity (4.16) which satisfies (4.28)-(4.30). Theorem 4.1 is now a consequence of Lemma 4.3.

We refer in the rest of the paper to solution of Problem 𝒫V\mathcal{P}^{V} as a weak solution to the contact problem 𝒫\mathcal{P}. We conclude by Theorem 4.1 that, Problem 𝒫\mathcal{P} has a unique weak solution solution with regularity (4.16), provided that (4.1)-(4.7) hold.

5 A convergence result

We now study the dependence of the solution of Problem 𝒫V\mathcal{P}^{V} with respect to perturbations of the data. To this end, we assume in what follows that (4.1)-(4.7) hold and we denote by ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) the solution of Problem 𝒫V\mathcal{P}^{V} obtained in Theorem 4.1, For each ρ>0\rho>0 let pρ,bρ,𝒇0ρ,𝒇2ρ,𝒖0ρ,𝝈0ρp_{\rho},b_{\rho},\boldsymbol{f}_{0\rho},\boldsymbol{f}_{2\rho},\boldsymbol{u}_{0\rho},\boldsymbol{\sigma}_{0\rho} and 𝜿0ρ\boldsymbol{\kappa}_{0\rho} represent perturbations of p,bp,b, 𝒇0,𝒇2,𝒖0,𝝈0\boldsymbol{f}_{0},\boldsymbol{f}_{2},\boldsymbol{u}_{0},\boldsymbol{\sigma}_{0} and 𝜿0\boldsymbol{\kappa}_{0}, respectively, which satisfy conditions (4.4)-(4.7). With these data, we consider the following perturbation of Problem 𝒫V\mathcal{P}^{V}.

Problem 𝒫ρV\mathcal{P}_{\rho}^{V}. Find a displacement field 𝒖ρ:+U\boldsymbol{u}_{\rho}:\mathbb{R}_{+}\rightarrow U, a stress field 𝝈ρ:+Q\boldsymbol{\sigma}_{\rho}:\mathbb{R}_{+}\rightarrow Q and an internal state variable 𝜿ρ:+L2(Ω)m\boldsymbol{\kappa}_{\rho}:\mathbb{R}_{+}\rightarrow L^{2}(\Omega)^{m} such that

𝝈ρ(t)=0t𝒢(𝝈ρ(s),𝜺(𝒖ρ(s)),𝜿ρ(s))𝑑s+𝝈0ρ𝜺(𝒖0ρ)+𝜺(𝒖ρ(t))\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\int_{0}^{t}\mathcal{G}\left(\boldsymbol{\sigma}_{\rho}(s),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right),\boldsymbol{\kappa}_{\rho}(s)\right)ds+\boldsymbol{\sigma}_{0\rho}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0\rho}\right)+\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right) (5.1)
𝜿ρ(t)=0t𝑮(𝝈ρ(s),𝜺(𝒖ρ(s)),𝜿ρ(s))𝑑s+𝜿0ρ\displaystyle\boldsymbol{\kappa}_{\rho}(t)=\int_{0}^{t}\boldsymbol{G}\left(\boldsymbol{\sigma}_{\rho}(s),\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right),\boldsymbol{\kappa}_{\rho}(s)\right)ds+\boldsymbol{\kappa}_{0\rho} (5.2)
(𝝈ρ(t),𝜺(𝒗)𝜺(𝒖ρ(t)))Q+(pρ(uρν(t)),vνuρν(t))L2(Γ3)\displaystyle\left(\boldsymbol{\sigma}_{\rho}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(p_{\rho}\left(u_{\rho\nu}(t)\right),v_{\nu}-u_{\rho\nu}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (5.3)
+(0tbρ(ts)uρν+(s)𝑑s,vν+uρν+(t))L2(Γ3)\displaystyle+\left(\int_{0}^{t}b_{\rho}(t-s)u_{\rho\nu}^{+}(s)ds,v_{\nu}^{+}-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(𝒇0ρ(t),𝒗𝒖ρ(t))L2(Ω)d+(𝒇2ρ(t),𝒗𝒖ρ(t))L2(Γ2)d𝒗U\displaystyle\geq\left(\boldsymbol{f}_{0\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\forall\boldsymbol{v}\in U

for all t+t\in\mathbb{R}_{+}.
Here and below uρνu_{\rho\nu} represents the normal component of the function 𝒖ρ\boldsymbol{u}_{\rho}. It follows from Theorem 4.1 that, for each ρ>0\rho>0, Problem 𝒫ρV\mathcal{P}_{\rho}^{V} has a unique solution ( 𝒖ρ,𝝈ρ,𝜿ρ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho},\boldsymbol{\kappa}_{\rho} ) with the regularity 𝒖ρC(+;U),𝝈ρC(+;Q)\boldsymbol{u}_{\rho}\in C\left(\mathbb{R}_{+};U\right),\boldsymbol{\sigma}_{\rho}\in C\left(\mathbb{R}_{+};Q\right) and 𝜿ρC(+;L2(Ω)m)\boldsymbol{\kappa}_{\rho}\in C\left(\mathbb{R}_{+};L^{2}(\Omega)^{m}\right). Consider now the following assumptions:

{ There exists F:++and α+such that  (a) |pρ(𝒙,r)p(𝒙,r)|F(ρ)(|r|+α)r, a.e. 𝒙Γ3, for each ρ>0 (b) F(ρ)0 as ρ0\left\{\begin{array}[]{l}\text{ There exists }F:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\text{and }\alpha\in\mathbb{R}_{+}\text{such that }\\ \text{ (a) }\left|p_{\rho}(\boldsymbol{x},r)-p(\boldsymbol{x},r)\right|\leq F(\rho)(|r|+\alpha)\\ \quad\forall r\in\mathbb{R}\text{, a.e. }\boldsymbol{x}\in\Gamma_{3}\text{, for each }\rho>0\text{. }\\ \text{ (b) }F(\rho)\rightarrow 0\text{ as }\rho\rightarrow 0\text{. }\end{array}\right.
bρb in C(+;L(Γ3)) as ρ0.𝒇0ρ𝒇0 in C(+;L2(Ω)d) as ρ0.𝒇2ρ𝒇2 in C(+;L2(Γ2)d) as ρ0.𝒖0ρ𝒖0 in V as ρ0.𝝈0ρ𝝈0 in Q as ρ0.𝜿0ρ𝜿0 in L2(Ω)m as ρ0.\begin{array}[]{ll}b_{\rho}\rightarrow b&\text{ in }C\left(\mathbb{R}_{+};L^{\infty}\left(\Gamma_{3}\right)\right)\quad\text{ as }\quad\rho\rightarrow 0.\\ \boldsymbol{f}_{0\rho}\rightarrow\boldsymbol{f}_{0}&\text{ in }C\left(\mathbb{R}_{+};L^{2}(\Omega)^{d}\right)\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{f}_{2\rho}\rightarrow\boldsymbol{f}_{2}&\text{ in }C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{2}\right)^{d}\right)\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{u}_{0\rho}\rightarrow\boldsymbol{u}_{0}&\text{ in }V\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{\sigma}_{0\rho}\rightarrow\boldsymbol{\sigma}_{0}&\text{ in }Q\quad\text{ as }\rho\rightarrow 0.\\ \boldsymbol{\kappa}_{0\rho}\rightarrow\boldsymbol{\kappa}_{0}&\text{ in }L^{2}(\Omega)^{m}\quad\text{ as }\rho\rightarrow 0.\end{array}

We have the following convergence result.
Theorem 5.1 Assume that (5.4)-(5.10) hold. Then the solution ( 𝒖ρ,𝝈ρ,𝜿ρ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho},\boldsymbol{\kappa}_{\rho} ) of Problem 𝒫ρV\mathcal{P}_{\rho}^{V} converges to the solution ( 𝒖,𝝈,𝜿\boldsymbol{u},\boldsymbol{\sigma},\boldsymbol{\kappa} ) of Problem 𝒫V\mathcal{P}^{V}, i.e.

{𝒖ρ𝒖 in C(+;V)𝝈ρ𝝈 in C(+;Q)𝜿ρ𝜿 in C(+;L2(Ω)m)\left\{\begin{array}[]{lll}\boldsymbol{u}_{\rho}\rightarrow\boldsymbol{u}&\text{ in }&C\left(\mathbb{R}_{+};V\right)\\ \boldsymbol{\sigma}_{\rho}\rightarrow\boldsymbol{\sigma}&\text{ in }&C\left(\mathbb{R}_{+};Q\right)\\ \boldsymbol{\kappa}_{\rho}\rightarrow\boldsymbol{\kappa}&\text{ in }&C\left(\mathbb{R}_{+};L^{2}(\Omega)^{m}\right)\end{array}\right.

as ρ0\rho\rightarrow 0.
Proof. Let ρ>0\rho>0. We define the operators Pρ:VV,ρ:C(+;V)C(+;L2(Γ3))P_{\rho}:V\rightarrow V,\mathcal{B}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};L^{2}\left(\Gamma_{3}\right)\right) and the function 𝒇ρ:+V\boldsymbol{f}_{\rho}:\mathbb{R}_{+}\rightarrow V by equalities

(Pρ𝒖,𝒗)V=Γ3pρ(uν)vν𝑑a𝒖,𝒗V\displaystyle\left(P_{\rho}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}p_{\rho}\left(u_{\nu}\right)v_{\nu}da\quad\forall\boldsymbol{u},\boldsymbol{v}\in V (5.12)
(ρ𝒖(t),ξ)L2(Γ3)=(0tbρ(ts)uν+(s)𝑑s,ξ)L2(Γ3)\displaystyle\left(\mathcal{B}_{\rho}\boldsymbol{u}(t),\xi\right)_{L^{2}\left(\Gamma_{3}\right)}=\left(\int_{0}^{t}b_{\rho}(t-s)u_{\nu}^{+}(s)ds,\xi\right)_{L^{2}\left(\Gamma_{3}\right)} (5.13)
𝒖C(+;V),ξL2(Γ3),t+\displaystyle\quad\forall\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right),\xi\in L^{2}\left(\Gamma_{3}\right),t\in\mathbb{R}_{+}
(𝒇ρ(t),𝒗)V=Ω𝒇0ρ(t)𝒗𝑑x+Γ2𝒇2ρ(t)𝒗𝑑a𝒗V,t+\displaystyle\left(\boldsymbol{f}_{\rho}(t),\boldsymbol{v}\right)_{V}=\int_{\Omega}\boldsymbol{f}_{0\rho}(t)\cdot\boldsymbol{v}dx+\int_{\Gamma_{2}}\boldsymbol{f}_{2\rho}(t)\cdot\boldsymbol{v}da\quad\forall\boldsymbol{v}\in V,t\in\mathbb{R}_{+} (5.14)

Also, we use Lemma 4.2 to define the operator 𝒮ρ:C(+;V)C(+;Q×L2(Ω)m)\mathcal{S}_{\rho}:C\left(\mathbb{R}_{+};V\right)\rightarrow C\left(\mathbb{R}_{+};Q\times L^{2}(\Omega)^{m}\right) by equalities

𝒮ρ𝒖(t)=(𝒮1ρ𝒖(t),𝒮2ρ𝒖(t))\displaystyle\mathcal{S}_{\rho}\boldsymbol{u}(t)=\left(\mathcal{S}_{1\rho}\boldsymbol{u}(t),\mathcal{S}_{2\rho}\boldsymbol{u}(t)\right) (5.15)
𝒮1ρ𝒖(t)=0t𝒢(𝒮1ρ𝒖(s)+𝜺(𝒖(s)),𝜺(𝒖(s)),𝒮2ρ𝒖(s))𝑑s+𝝈0ρ𝜺(𝒖0ρ)\displaystyle\mathcal{S}_{1\rho}\boldsymbol{u}(t)=\int_{0}^{t}\mathcal{G}\left(\mathcal{S}_{1\rho}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2\rho}\boldsymbol{u}(s)\right)ds+\boldsymbol{\sigma}_{0\rho}-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{0\rho}\right) (5.16)
𝒮2ρ𝒖(t)=0t𝑮(𝒮1ρ𝒖(s)+𝜺(𝒖(s)),𝜺(𝒖(s)),𝒮2ρ𝒖(s))𝑑s+𝜿0ρ\displaystyle\mathcal{S}_{2\rho}\boldsymbol{u}(t)=\int_{0}^{t}\boldsymbol{G}\left(\mathcal{S}_{1\rho}\boldsymbol{u}(s)+\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\boldsymbol{\varepsilon}(\boldsymbol{u}(s)),\mathcal{S}_{2\rho}\boldsymbol{u}(s)\right)ds+\boldsymbol{\kappa}_{0\rho} (5.17)

for all 𝒖C(+;V)\boldsymbol{u}\in C\left(\mathbb{R}_{+};V\right) and t+t\in\mathbb{R}_{+}. Finally, we recall Lemma 4.3 which shows that the solution ( 𝒖ρ,𝝈ρ,𝜿ρ\boldsymbol{u}_{\rho},\boldsymbol{\sigma}_{\rho},\boldsymbol{\kappa}_{\rho} ) satisfies

𝝈ρ(t)=𝜺(𝒖ρ(t))+𝒮1ρ(𝒖ρ(t))\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)+\mathcal{S}_{1\rho}\left(\boldsymbol{u}_{\rho}(t)\right) (5.18)
𝜿ρ(t)=𝒮2ρ𝒖ρ(t)\displaystyle\boldsymbol{\kappa}_{\rho}(t)=\mathcal{S}_{2\rho}\boldsymbol{u}_{\rho}(t) (5.19)
(𝜺(𝒖ρ(t)),𝜺(𝒗)𝜺(𝒖ρ(t)))Q+(𝒮1ρ𝒖ρ(t),𝜺(𝒗)𝜺(𝒖ρ(t)))Q+(Pρ𝒖ρ(t),𝒗𝒖ρ(t))V+(ρ𝒖ρ(t),vν+uρν+(t))L2(Γ3)(𝒇(t),𝒗𝒖ρ(t))V\displaystyle\begin{array}[]{l}\left(\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}+\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}\\ \quad+\left(P_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t),v_{\nu}^{+}-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}\\ \quad\geq\left(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}_{\rho}(t)\right)_{V}\end{array} (5.20)

for all t+t\in\mathbb{R}_{+}.
Let ρ>0,n\rho>0,n\in\mathbb{N}^{*} and let t[0,n]t\in[0,n]. We take 𝒗=𝒖(t)\boldsymbol{v}=\boldsymbol{u}(t) in (5.20) and 𝒗=𝒖ρ(t)\boldsymbol{v}=\boldsymbol{u}_{\rho}(t) in (4.30) and add the resulting inequalities to obtain

(ε(𝒖(t))ε(𝒖ρ(t)),𝜺(𝒖(t))𝜺(𝒖ρ(t)))Q\displaystyle\left(\mathcal{E}\varepsilon(\boldsymbol{u}(t))-\mathcal{E}\varepsilon\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.21)
(𝒮1ρ𝒖ρ(t)𝒮1𝒖(t),𝜺(𝒖(t))𝜺(𝒖ρ(t)))Q\displaystyle\leq\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}
+(Pρ𝒖ρ(t)P𝒖(t),𝒖(t)𝒖ρ(t))V\displaystyle\quad+\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}
+(ρ𝒖ρ(t)𝒖(t),uν+(t)uρν+(t))L2(Γ3)\displaystyle\quad+\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
+(𝒇ρ(t)𝒇(t),𝒖(t)𝒖ρ(t))V\displaystyle\quad+\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}

We now estimate each term in the previous inequality. First, we use assumption (4.1) to deduce that

m𝒖ρ(t)𝒖(t)V2(𝜺(𝒖(t))𝜺(𝒖ρ(t)),𝜺(𝒖(t))𝜺(𝒖ρ(t)))Q.m_{\mathcal{E}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}^{2}\leq\left(\mathcal{E}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\mathcal{E}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q}. (5.22)

Next, using the Cauchy-Schwarz inequality we deduce that

(𝒮1ρ𝒖ρ(t)𝒮1𝒖(t),𝜺(𝒖(t))𝜺(𝒖ρ(t)))Q\displaystyle\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.23)
𝒮ρ𝒖ρ(t)𝒮𝒖(t)Q×L2(Ω)m𝒖(t)𝒖ρ(t)V\displaystyle\quad\leq\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\left\|\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right\|_{V}

Moreover, by arguments similar to those used in the proof of (4.24) we deduce that

𝒮ρ𝒖ρ(t)𝒮𝒖(t)Q×L2(Ω)m(𝒦0t𝒖ρ(s)𝒖(s)V𝑑s+τ0ρ)en𝒦\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\leq\left(\mathcal{K}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\tau_{0\rho}\right)e^{n\mathcal{K}} (5.24)

where 𝒦\mathcal{K} is given by (4.23) and

τ0ρ=𝝈0ρ𝝈0Q+d𝐐𝒖0ρ𝒖0V+𝜿0ρ𝜿0L2(Ω)m\tau_{0\rho}=\left\|\boldsymbol{\sigma}_{0\rho}-\boldsymbol{\sigma}_{0}\right\|_{Q}+d\|\mathcal{E}\|_{\mathbf{Q}^{\infty}}\left\|\boldsymbol{u}_{0\rho}-\boldsymbol{u}_{0}\right\|_{V}+\left\|\boldsymbol{\kappa}_{0\rho}-\boldsymbol{\kappa}_{0}\right\|_{L^{2}(\Omega)^{m}} (5.25)

We combine now (5.23) and (5.24) and use the notation sn=𝒦en𝒦s_{n}=\mathcal{K}e^{n\mathcal{K}} introduced in the proof of Lemma 4.2 to deduce that

(𝒮1ρ𝒖ρ(t)𝒮1𝒖(t),𝜺(𝒖(t))𝜺(𝒖ρ(t)))Q\displaystyle\left(\mathcal{S}_{1\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{1}\boldsymbol{u}(t),\boldsymbol{\varepsilon}(\boldsymbol{u}(t))-\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)\right)_{Q} (5.26)
(sn0t𝒖ρ(s)𝒖(s)V𝑑s+τ0ρen𝒦)𝒖ρ(t)𝒖(t)V\displaystyle\quad\leq\left(s_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\tau_{0\rho}e^{n\mathcal{K}}\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

To proceed, we use the definitions (5.12) and (4.25), the monotonicity of the function pρp_{\rho} and assumption (5.4) to see that

(Pρ𝒖ρ(t)P𝒖(t),𝒖(t)𝒖ρ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}
=Γ3(pρ(uρν(t))p(uν(t)))(uν(t)uρν(t))𝑑a\displaystyle\quad=\int_{\Gamma_{3}}\left(p_{\rho}\left(u_{\rho\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right)\left(u_{\nu}(t)-u_{\rho\nu}(t)\right)da
Γ3(pρ(uν(t))p(uν(t)))(uν(t)uρν(t))𝑑a\displaystyle\quad\leq\int_{\Gamma_{3}}\left(p_{\rho}\left(u_{\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right)\left(u_{\nu}(t)-u_{\rho\nu}(t)\right)da
Γ3|pρ(uν(t))p(uν(t))||uν(t)uρν(t)|𝑑a\displaystyle\quad\leq\int_{\Gamma_{3}}\left|p_{\rho}\left(u_{\nu}(t)\right)-p\left(u_{\nu}(t)\right)\right|\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da
Γ3F(ρ)(|uν(t)|+α)|uν(t)uρν(t)|𝑑a\displaystyle\quad\leq\int_{\Gamma_{3}}F(\rho)\left(\left|u_{\nu}(t)\right|+\alpha\right)\left|u_{\nu}(t)-u_{\rho\nu}(t)\right|da

Therefore, using the trace inequality (2.1), after some elementary calculus we find that

(Pρ𝒖ρ(t)P𝒖(t),𝒖(t)𝒖ρ(t))V\displaystyle\left(P_{\rho}\boldsymbol{u}_{\rho}(t)-P\boldsymbol{u}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V} (5.27)
F(ρ)(c02𝒖(t)V+c0αmeas(Γ3)12)𝒖ρ(t)𝒖(t)V\displaystyle\quad\leq F(\rho)\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\alpha\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

Next, using definitions (5.13), (4.26) and condition (4.6) we have

(ρ𝒖ρ(t)𝒖(t),uν+(t)uρν+(t))L2(Γ3)\displaystyle\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
=(0t(bρ(ts)uρν+(s)b(ts)uν+(s))𝑑s,uν+(t)uρν+(t))L2(Γ3)\displaystyle\quad=\left(\int_{0}^{t}\left(b_{\rho}(t-s)u_{\rho\nu}^{+}(s)-b(t-s)u_{\nu}^{+}(s)\right)ds,u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)}
(0tbρ(ts)(uρν+(s)uν+(s))L2(Γ3)ds\displaystyle\quad\leq\left(\int_{0}^{t}\left\|b_{\rho}(t-s)\left(u_{\rho\nu}^{+}(s)-u_{\nu}^{+}(s)\right)\right\|_{L^{2}\left(\Gamma_{3}\right)}ds\right.
+0tbρ(ts)uν+(s)b(ts)uν+(s)L2(Γ3)ds)𝒖ρ(t)𝒖(t)L2(Γ3)d\displaystyle\left.\quad+\int_{0}^{t}\left\|b_{\rho}(t-s)u_{\nu}^{+}(s)-b(t-s)u_{\nu}^{+}(s)\right\|_{L^{2}\left(\Gamma_{3}\right)}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{L^{2}\left(\Gamma_{3}\right)^{d}}

Therefore,

(ρ𝒖ρ(t)𝒖(t),uν+(t)uρν+(t))L2(Γ3)\displaystyle\left(\mathcal{B}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{B}\boldsymbol{u}(t),u_{\nu}^{+}(t)-u_{\rho\nu}^{+}(t)\right)_{L^{2}\left(\Gamma_{3}\right)} (5.28)
(θρn0t𝒖ρ(s)𝒖(s)V𝑑s+ωρn0t𝒖(s)V𝑑s)𝒖ρ(t)𝒖(t)V\displaystyle\quad\leq\left(\theta_{\rho n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\omega_{\rho n}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds\right)\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}

where

θρn=c02maxr[0,n]bρ(r)L(Γ3),\displaystyle\theta_{\rho n}=c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}, (5.29)
ωρn=c02maxr[0,n]bρ(r)b(r)L(Γ3).\displaystyle\omega_{\rho n}=c_{0}^{2}\max_{r\in[0,n]}\left\|b_{\rho}(r)-b(r)\right\|_{L^{\infty}\left(\Gamma_{3}\right)}. (5.30)

Finally, it is easy to see that

(𝒇ρ(t)𝒇(t),𝒖(t)𝒖ρ(t))Vδρn𝒖ρ(t)𝒖(t)V\left(\boldsymbol{f}_{\rho}(t)-\boldsymbol{f}(t),\boldsymbol{u}(t)-\boldsymbol{u}_{\rho}(t)\right)_{V}\leq\delta_{\rho n}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V} (5.31)

where

δρn=maxr[0,n]𝒇ρ(r)𝒇(r)V\delta_{\rho n}=\max_{r\in[0,n]}\left\|\boldsymbol{f}_{\rho}(r)-\boldsymbol{f}(r)\right\|_{V} (5.32)

We now combine (5.21), (5.22), (5.26), (5.27), (5.28) and (5.31) to deduce that

𝒖ρ(t)\displaystyle\|\boldsymbol{u}_{\rho}(t) 𝒖(t)Vsnm0t𝒖ρ(s)𝒖(s)Vds+τ0ρen𝒦m\displaystyle-\boldsymbol{u}(t)\left\|{}_{V}\leq\frac{s_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\right\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\|_{V}ds+\frac{\tau_{0\rho}e^{n\mathcal{K}}}{m_{\mathcal{E}}} (5.33)
+\displaystyle+ F(ρ)m(c02𝒖(t)V+c0αmeas(Γ3)12)\displaystyle\frac{F(\rho)}{m_{\mathcal{E}}}\left(c_{0}^{2}\|\boldsymbol{u}(t)\|_{V}+c_{0}\alpha\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)
+θρnm0t𝒖ρ(s)𝒖(s)V𝑑s+ωρnm0t𝒖(s)V𝑑s+δρnm\displaystyle+\frac{\theta_{\rho n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\frac{\omega_{\rho n}}{m_{\mathcal{E}}}\int_{0}^{t}\|\boldsymbol{u}(s)\|_{V}ds+\frac{\delta_{\rho n}}{m_{\mathcal{E}}}

Let

ξn,u=max{en𝒦m,1m(c02maxt[0,n]𝒖(t)V+c0αmeas(Γ3)12)1m0n𝒖(s)Vds,1m}\begin{gathered}\xi_{n,u}=\max\left\{\frac{e^{n\mathcal{K}}}{m_{\mathcal{E}}},\frac{1}{m_{\mathcal{E}}}\left(c_{0}^{2}\max_{t\in[0,n]}\|\boldsymbol{u}(t)\|_{V}+c_{0}\alpha\operatorname{meas}\left(\Gamma_{3}\right)^{\frac{1}{2}}\right)\right.\\ \left.\frac{1}{m_{\mathcal{E}}}\int_{0}^{n}\|\boldsymbol{u}(s)\|_{V}ds,\frac{1}{m_{\mathcal{E}}}\right\}\end{gathered}

and note that ξn,u\xi_{n,u} depends on n,𝒖,d,,𝒢,G,c0,αn,\boldsymbol{u},d,\mathcal{E},\mathcal{G},G,c_{0},\alpha and Γ3\Gamma_{3} but does not depends neither on ρ\rho nor on tt. Then, (5.33) yields

𝒖ρ(t)\displaystyle\|\boldsymbol{u}_{\rho}(t)- 𝒖(t)V(F(ρ)+ωρn+δρn+τ0ρ)ξn,u\displaystyle\boldsymbol{u}(t)\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u} (5.34)
+θρn+snm0t𝒖ρ(s)𝒖(s)V𝑑s\displaystyle+\frac{\theta_{\rho n}+s_{n}}{m_{\mathcal{E}}}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Next, we use assumption (5.5) and equivalence (2.4) to see that the sequence (θρn)ρ\left(\theta_{\rho n}\right)_{\rho} defined by (5.29) is bounded. Therefore, there exists ζn>0\zeta_{n}>0 which depends on nn and is independent of ρ\rho such that

0θρn+snmζn for all ρ>00\leq\frac{\theta_{\rho n}+s_{n}}{m_{\mathcal{E}}}\leq\zeta_{n}\quad\text{ for all }\quad\rho>0

and, using this inequality in (5.34) we obtain that

𝒖ρ(t)\displaystyle\|\boldsymbol{u}_{\rho}(t)- 𝒖(t)V(F(ρ)+ωρn+δρn+τ0ρ)ξn,u\displaystyle\boldsymbol{u}(t)\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u} (5.35)
+ζn0t𝒖ρ(s)𝒖(s)V𝑑s\displaystyle+\zeta_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds

Then, we use the Gronwall inequality to see that

𝒖ρ(t)𝒖(t)V(F(ρ)+ωρn+δρn+τ0ρ)ξn,uetζn\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u}e^{t\zeta_{n}}

and, passing to the upper bound as t[0,n]t\in[0,n] we find that

maxt[0,n]𝒖ρ(t)𝒖(t)V(F(ρ)+ωρn+δρn+τ0ρ)ξn,uenζn\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\leq\left(F(\rho)+\omega_{\rho n}+\delta_{\rho n}+\tau_{0\rho}\right)\xi_{n,u}e^{n\zeta_{n}} (5.36)

Note that (5.5), (2.4) and (5.30) imply that

ωρn0 as ρ0\omega_{\rho n}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.37)

Moreover, (5.6), (5.7), (2.4) and (5.32) yield

δρn0 as ρ0\delta_{\rho n}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.38)

and, finally, (5.8)-(5.10) and (5.25) show that

τ0ρ0 as ρ0\tau_{0\rho}\rightarrow 0\quad\text{ as }\quad\rho\rightarrow 0 (5.39)

We use now the convergences (5.4) (b), (5.37)-(5.39) and inequality (5.36) to obtain that

maxt[0,n]𝒖ρ(t)𝒖(t)V0 as ρ0\max_{t\in[0,n]}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.40)

On the other hand using equalities (5.18), (5.19) and (4.28), (4.29) we find that

𝝈ρ(t)𝝈(t)Q+𝜿ρ(t)𝜿(t)L2(Ω)m\displaystyle\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}+\left\|\boldsymbol{\kappa}_{\rho}(t)-\boldsymbol{\kappa}(t)\right\|_{L^{2}(\Omega)^{m}} (5.41)
d𝐐𝒖ρ(t)𝒖(t)V+2𝒮ρ𝒖ρ(t)𝒮𝒖(t)Q×L2(Ω)m\displaystyle\quad\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}+\sqrt{2}\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}

We write

𝒮ρ𝒖ρ(t)𝒮𝒖(t)Q×L2(Ω)m\displaystyle\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}
𝒮ρ𝒖ρ(t)𝒮ρ𝒖(t)Q×L2(Ω)m+𝒮ρ𝒖(t)𝒮𝒖(t)Q×L2(Ω)m\displaystyle\quad\leq\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}_{\rho}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}+\left\|\mathcal{S}_{\rho}\boldsymbol{u}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}

then we use inequalities (4.19) and (5.24) to see that

𝒮ρ𝒖ρ(t)𝒮𝒖(t)Q×L2(Ω)msn0t𝒖ρ(s)𝒖(s)V𝑑s\displaystyle\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\leq s_{n}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds
+(𝒦0t𝒖ρ(s)𝒖(s)V𝑑s+τ0ρ)en𝒦\displaystyle\quad+\left(\mathcal{K}\int_{0}^{t}\left\|\boldsymbol{u}_{\rho}(s)-\boldsymbol{u}(s)\right\|_{V}ds+\tau_{0\rho}\right)e^{n\mathcal{K}}

This inequality combined with convergences (5.39) and (5.40) implies that

maxt[0,n]𝒮ρ𝒖ρ(t)𝒮𝒖(t)Q×L2(Ω)m0 as ρ0\max_{t\in[0,n]}\left\|\mathcal{S}_{\rho}\boldsymbol{u}_{\rho}(t)-\mathcal{S}\boldsymbol{u}(t)\right\|_{Q\times L^{2}(\Omega)^{m}}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.42)

Therefore, using equality (5.41) and convergences (5.40), (5.42) we deduce that

maxt[0,n]𝝈ρ(t)𝝈(t)Q0 as ρ0\displaystyle\max_{t\in[0,n]}\left\|\boldsymbol{\sigma}_{\rho}(t)-\boldsymbol{\sigma}(t)\right\|_{Q}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.43)
maxt[0,n]𝜿ρ(t)𝜿(t)L2(Ω)m0 as ρ0\displaystyle\max_{t\in[0,n]}\left\|\boldsymbol{\kappa}_{\rho}(t)-\boldsymbol{\kappa}(t)\right\|_{L^{2}(\Omega)^{m}}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (5.44)

The convergence (5.11) is now a direct consequence of the convergences (5.40), (5.43) and (5.44).

In addition to the mathematical interest in the convergence result (5.11) it is of importance from mechanical point of view, since it states that the weak solution of the problem (3.1)-(3.8) depends continuously on the normal compliance function, the surface memory function, the densities of body forces and surface tractions and the initial data, as well.

Acknowledgement

The work of the first two authors was supported within the Sectorial Operational Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the projects POSDRU/88/1.5/S/60185 and POSDRU/107/1.5/ S/76841, respectively, entitled Modern Doctoral Studies: Internationalization and Interdisciplinarity, at University Babeş-Bolyai, Cluj-Napoca, Romania.

References

[1] M. Barboteu, A. Matei and M. Sofonea, Analysis of quasistatic viscoplastic contact problems with normal compliance, Quarterly of Mechanics and Applied Mathematics 65 (2012), 555-579.
[2] C. Corduneanu, Problèmes globaux dans la théorie des équations intégrales de Volterra, Ann. Math. Pure Appl. 67 (1965), 349-363.
[3] N. Cristescu and I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnică Bucharest, 1982.
[4] A. Farcaş, F. Pătrulescu, M. Sofonea, A history-dependent contact problem with unilateral constrai Mathematics and its Applications 2 (2012), 105-111.
[5] J. R. Fernández-García, W. Han, M. Sofonea and J.M. Viaño, Variational and numerical analysis of a frictionless contact problem for elastic-viscoplastic materials with internal state vaariable, Quarterly of Mechanics and Applied Mathematics 54 (2001), 501-522.
[6] W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics 30, American Mathematical Society-International Press, 2002.
[7] I.R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford, 1993.
[8] J. Jarušek and M. Sofonea, On the solvability of dynamic elastic-viscoplastic contact problems, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM) 88 (2008), 3-22.
[9] N. Kikuchi and J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[10] A. Klarbring, A. Mikelič and M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci. 26 (1988), 811-832.
[11] A. Klarbring, A. Mikelič and M. Shillor, On friction problems with normal compliance, Nonlinear Analysis 13 (1989), 935-955.
[12] J. J. Massera and J. J. Schäffer, Linear Differential Equations and Function Spaces, Academic Press, New York-London, 1966.
[13] J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws, Nonlinear Analysis TMA 11 (1987), 407-428.
[14] J.T. Oden and J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52 (1985), 527-634.
[15] M. Shillor, M. Sofonea and J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics 655, Springer, Berlin, 2004.
[16] M. Sofonea, C. Avramescu, A. Matei, A Fixed point result with applications in the study of viscoplastic frictionless contact problems, Communications on pure and Applied Analysis 7 (2008), 645-658.
[17] M. Sofonea and A. Matei, History-dependent quasivariational inequalities arising in Contact Mechanics, European Journal of Applied Mathematics 22 (2011), 471491.
[18] M. Sofonea and A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series 398, Cambridge University Press, Cambridge, 2012.

2014

Related Posts