[1] Allen, L.J.S.: An Introduction to Mathematical Biology. Pearson Education, London (2006)
[2] Avramescu, C.: On a fixed point theorem (in Romanian). Studii ¸si Cercet˘ari Matematice 22(2), 215–221 (1970)
[3] Brauer, F., Castillo-Chavez, C.: Mathematical Models in Population Biology and Epidemiology. Springer, Berlin (2012)
[4] Coron, J.M.: Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136. American Mathematical Society, Providence (2007)
[5] Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)
[6] Haplea, I.S¸, Parajdi, L.G., Precup, R.: On the controllability of a system modeling cell dynamics related to leukemia. Symmetry 13, 1867 (2021)
[7] He, X., Zhu, Z., Chen, J., Chen, F.: Dynamical analysis of a Lotka Volterra commensalism model with additive Allee effect. Open Math. 20, 646–665 (2022)
[8] Hofman, A.: An algorithm for solving a control problem for Kolmogorov systems, Studia. Universitatis Babes-Bolyai. Mathematica 68, 331–340 (2023)
[9] Hofman, A., Precup, R.: On some control problems for Kolmogorov type systems. Math. Model. Control 2, 90–99 (2022)
[10] Hofman, A., Precup, R.: Vector fixed point approach to control of Kolmogorov differential systems. Contemp. Math. 5(2), 1968–1981 (2024)
[11] Kolmogorov, A.N.: Sulla teoria di Volterra della lotta per l’esistenza. Giornale dell Istituto Italiano degli Attuari 7, 74–80 (1936)
[12] Krasnoselskii, M.A.: Some problems of nonlinear analysis. Am. Math. Soc. Transl. Ser. 2(10), 345–409 (1958)
[13] Li, X., Liu, Z.H., Mig´orski, S.: Approximate controllability for second-order nonlinear evolution hemivariational inequalities. Electron. J. Qual. Theory Differ. Equ. 2015, 100 (2015)
[14] Li, J.: Control Schemes to reduce risk of extinction in the Lotka-Volterra predator-prey model. J. Appl. Math. Phys. 2(7), 644–652 (2014)
[15] Li, J., Zhao, A., Yan, J.: The permanence and global attractivity of a Kolmogorov system with feedback controls. Nonlinear Anal. Real World Appl. 10, 506–518 (2009)
[16] Llibre, J., Salhi, T.: On the dynamics of a class of Kolmogorov systems. Appl. Math. Comput. 225, 242–245 (2013)
[17] Lois-Prados, C., Precup, R.: Positive periodic solutions for Lotka-Volterra systems with a general attack rate. Nonlinear Anal. Real World Appl. 52, 103024
(2020)
[18] Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of second-order evolution hemivariational inequalities. Results Math. 75, 160 (2020)
[19] Murray, J.D.: An Introduction to Mathematical Biology, vol. 1. Springer, New York (2011)
[20] Parajdi, L.G., P˘atrulescu, F., Precup, R., Haplea, I.S¸: Two numerical methods for solving a nonlinear system of integral equations of mixed Volterra-Fredholm type arising from a control problem related to leukemia. J. Appl. Anal. Comput. 13, 1797–1812 (2023)
[21] Perov, A.I.: On the Cauchy problem for a system of ordinary differential equations (Russian). Pviblizhen. Met. Reshen. Differ. Uvavn. 2, 115–134 (1964)
[22] Precup, R.: Methods in Nonlinear Integral Equations. Springer, Dordrecht (2002)
[23] Precup, R.: The role of matrices that are convergent to zero in the study of semilinear operator systems. Math. Comput. Model. 49, 703–708 (2009)
[24] Precup, R.: On some applications of the controllability principle for fixed point equations. Results Appl. Math. 13, 100236 (2022)
[25] Quinn, M.D., Carmichael, N.: An approach to non-linear control problems using fixed-point methods, degree theory and pseudo-inverses. Numer. Funct. Anal. Optim. 7, 197–219 (1985)
[26] Reich, S.: Fixed points of condensing functions. J. Math. Anal. Appl. 41, 460–467 (1973)
[27] Sigmund, K.: Kolmogorov and population dynamics. In: Charpentier, E., Lesne, A., Nikolski, N.K. (eds.) Kolmogorov’s Heritage in Mathematics. Springer, Berlin (2007)
[28] Tigan, G., Lazureanu, C., Munteanu, F., Sterbeti, C., Florea, A.: Analysis of a class of Kolmogorov systems. Nonlinear Anal. Real World Appl. 57, 103202 (2021)