A regularization method for a viscoelastic contact problem

Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and a deformable obstacle, the so-called foundation. The materialโ€™s behaviour is modelled with a viscoelastic constitutive law with long memory. The contact is frictionless and is defined using a multivalued normal compliance condition. We present a regularization method in the study of a class of variational inequalities involving history-dependent operators. Finally, we apply the abstract results to analyse the contact problem.

Authors

Flavius Patrulescu
Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy

Keywords

variational inequality, regularization, weak solution, normal compliance

Cite this paper as:

F. Pฤƒtrulescu, A regularization method for a viscoelastic contact problem, Math. Mech. Solids, vol. 23, no. 2 (2018), pp. 181-194

PDF

About this paper

Publisher Name

SAGE Publications, Thousand Oaks, CA

Print ISSN

1081-2865

Online ISSN

1741-3028

MR

3763367

ZBL

1391.74180

[1] C. Baiocchi, A. Capelo, Variational and quasivariational inequalities: applications to free-boundary problems, John Wiley, Chichester (1984).
[2] V. Barbu, Optimal control of variational inequalities, Pitman, Boston (1984).
[3] H. Brezis, Equations et inequations non lineaires dans les espaces vectoriels en dualite, Ann. Inst.Fourier, 18 (1968), 115-175.
[4] H. Brezis, Problemes unilateraux, J. Math. Pures Appl., 51 (1972), 1-168.
[5] G. Duvaut, J.L. Lions, Inequalities in mechanics and physics, Springer-Verlag, Berlin (1976).
[6] C. Eck, J. Jarusek, Existence results for the semicoercive static contact problem with Coulomb friction, Nonlinear Anal., 42 (2000), 961-976.
[7] R. Glowinski, J.L. Lions, R. Tremolieres, Numerical analysis of variational inequalities, North-Holland Publishing Company, Amsterdam (1981).
[8] R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New York (1984).
[9] W. Han, M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, Studies in Advanced Mathematics, 30, American Mathematical Societyโ€“International Press, Sommerville, MA (2002).
[10] J. Haslinger, I. Hlavacek, J.Necas, Numerical methods for unilateral problems in solid mechanics, In Handbook of Numerical Analysis, vol. IV, P.G. Ciarlet and J.-L. Lions (eds.), North-Holland, Amsterdam (1996).
[11] I. Hlavacek, J. Haslinger, J. Necas et al., Solution of variational inequalities in mechanics, Springer-Verlag, New-York, 1988.
[12] N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM, Philadelphia, 1988.
[13] N. Kikuchi, J.T. Oden, Theory of variational inequalities with applications to problems of flow through porous media, Int. J. Engng. Sci., 18 (1980), 1173-1284.
[14] D. Kinderlehrer, G. Stampacchia, An introduction to variational inequalities and their applications, SIAM, Philadelphia, 2000.
[15] J.T. Oden, J.A.C. Martins, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering, 52 (1985), 527-634.
[16] M. Shillor, M. Sofonea, J.J. Telega, Models and Analysis of Quasistatic Contact, Lecture Notes in Physics, 655, Springer, Berlin (2004).
[17] M. Sofonea, A. Matei, Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, 398, Cambridge University Press, Cambridge (2012).
[18] M. Sofonea, A. Matei. History-dependent quasivariational inequalities arising in Contact Mechanics, Eur. J. Appl. Math., 22 (2011), 471-491.
[19] P. Wriggers, Computational Contact Mechanics, Wiley, Chichester (2002).
[20] M. Sofonea, W. Han, M. Barboteu, Analysis of a viscoelastic contact problem with multivalued normal compliance and unilateral constraint, Comput. Methods Appl. Mech. Engrg., 26 (2013), 12-22.
[21] M. Sofonea, F. Patrulescu, Penalization of history-dependent variational inequalities, Eur. J. Appl. Math., 25 (2014), 155-176.
[22] A. Klarbring, A. Mikelic, M. Shillor, Frictional contact problems with normal compliance, Int. J. Engng. Sci., 26 (1988), 811-832.
[23] A. Klarbring, A. Mikelic, M. Shillor, On friction problems with normal compliance, Nonlinear Analysis, 13 (1989), 935-955.
[24] P.D. Panagiotopoulos, Inequality problems in mechanics and applications, Birkhauser, Boston (1985).
[25] F. Patrulescu, A. Ramadan, Convergence results for contact problems with memory term, Math. Rep., 17 (67) (2015), 24-41.

Paper (preprint) in HTML form

A regularization method for a viscoelastic contact problem

Flavius Pฤƒtrulescu
Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy, Cluj-Napoca, Romania
Abstract

We consider a mathematical model which describes the quasistatic contact between a viscoelastic body and a deformable obstacle, the so-called foundation. The materialโ€™s behaviour is modelled with a viscoelastic constitutive law with long memory. The contact is frictionless and is defined using a multivalued normal compliance condition. We present a regularization method in the study of a class of variational inequalities involving history-dependent operators. Finally, we apply the abstract results to analyse the contact problem.

Received 28 July 2016; accepted: 10 October 2016

Keywords

variational inequality; regularization; weak solution; normal compliance

I. Introduction

In this paper we introduce two novelties that we describe in what follows. First, we state and prove an abstract regularization result for a class of history-dependent variational inequalities in Hilbert spaces. More exactly, we continue the analysis provided in [1, Section 2.2.3], where regularization arguments are used to prove the unique solvability of the following variational inequality

uโˆˆX,(Au,vโˆ’u)X+j(v)โˆ’j(u)โ‰ฅ(f,vโˆ’u)X, for all vโˆˆX.u\in X,\quad(Au,v-u)_{X}+j(v)-j(u)\geq(f,v-u)_{X},\quad\text{ for all }v\in X.

Here (X,(โ‹…,โ‹…)X,โˆฅโ‹…โˆฅX)\left(X,(\cdot,\cdot)_{X},\|\cdot\|_{X}\right) denotes a real Hilbert space, A:Xโ†’XA:X\rightarrow X is a Lipschitz continuous and strongly monotone operator, j:Xโ†’โ„j:X\rightarrow\mathbb{R} is a convex, lower-semicontinuous functional and fโˆˆXf\in X. With respect to [1] we study the unique solvability of the following history-dependent variational inequality

(Au(t),vโˆ’u(t))X+(๐’ฎu(t),vโˆ’u(t))X\displaystyle(Au(t),v-u(t))_{X}+(\mathcal{S}u(t),v-u(t))_{X} (1.1)
+j(v)โˆ’j(u(t))โ‰ฅ(f(t),vโˆ’u(t))X for all vโˆˆX\displaystyle\quad+j(v)-j(u(t))\geq(f(t),v-u(t))_{X}\quad\text{ for all }v\in X

using a regularization method involving Gรขteaux differentiable functionals. Here, both the data and the solution uu depend on the time variable tโˆˆ[0,T]t\in[0,T], where T>0T>0. Moreover, concerning the operator ๐’ฎ\mathcal{S}, the current value ๐’ฎu(t)\mathcal{S}u(t) at moment tt depends on the history of the values of uu at moments 0โ‰คsโ‰คt0\leq s\leq t. Its presence implies the use of Gronwallโ€™s inequality or Lebesgueโ€™s convergence theorem.

We consider a contact problem which describes the frictionless contact between a viscoelastic body and a deformable foundation. We model the materialโ€™s behaviour with a constitutive law with long memory of the

00footnotetext: Corresponding author:
Flavius Pฤƒtrulescu, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, str. Fantanele nr. 57, Ap. 67-68, 400320 Cluj-Napoca, Romania.
Email: fpatrulescu@ictp.acad.ro

form

๐ˆ(t)=๐’œ๐œบ(๐’–(t))+โˆซ0tโ„ฌ(tโˆ’s)๐œบ(๐’–(s))๐‘‘s\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds (1.2)

where ๐’–\boldsymbol{u} denotes the displacement field, ๐ˆ\boldsymbol{\sigma} represents the stress tensor, ๐œบ(๐’–)\boldsymbol{\varepsilon}(\boldsymbol{u}) is the linearized strain tensor, ๐’œ\mathcal{A} is the elasticity operator and โ„ฌ\mathcal{B} represents the relaxation tensor. Moreover, we assume that the contact process is quasistatic and we study it in the interval of time [0,T][0,T]. Finally, we use a multivalued normal compliance condition to describe the contact process in normal direction.

This mathematical model was considered in [2]. There, the variational formulation was derived and unique weak solvability was proved. Moreover, the weak solution was approximated using a penalty method. Also, in [3] the dependence of the solution with respect to the data was studied and a fully discrete scheme was introduced. In addition, an optimal order error estimate was derived and numerical simulations were provided for a two-dimensional test problem.

The second novelty of the paper arises from the fact that we analyse the weak solvability of contact problem using regularization arguments. With respect to [2,3] we introduce a regularized contact problem where a single-valued normal compliance condition, including a regularization parameter, is considered. We prove that the weak solution of the regularized problem converges to the weak solution of the original contact problem, as the regularization parameter goes to zero. To this end, we apply the abstract regularization results obtained in the study of (1.1).

Next, we recall that general results on analysis of various classes of variational inequalities, including existence, uniqueness and regularity, can be found in [4-9]. The numerical analysis of variational inequalities, including solution algorithms and error estimates, was treated in [10, 11] and also in [12, 13]. Additional results on optimal control of variational inequalities can be found in [14]. An early attempt to study contact problems within the framework of variational inequalities was made in [15]. The variational analysis of contact models is given in [1,9,13,16,17][1,9,13,16,17]. There, the mathematical analysis of contact problems is provided, including existence and uniqueness results of the weak solution. Numerical analysis of contact models, including the study of fully discrete scheme, error estimates and numerical simulations, can be found in [12, 13, 17, 18]. An excellent reference in the study of frictional contact associated with heat generation, material damage, wear and adhesion of contacting surfaces is [19].

The rest of the paper is structured as follows. In Section 2 we describe the classical formulation of the model and list the assumptions on the data. In Section 3 we introduce the regularized problem and derive the weak formulations. Then, we state our main existence, uniqueness and convergence result, Theorem 3.1. In Section 4 we provide the abstract problem and recall its unique solvability obtained in [20]. Then we consider the associated regularized problem and state our main abstract result, Theorem 4.3. The proof of this theorem is given in Section 5. Finally, in Section 6 we illustrate the use of abstract arguments in the proof of Theorem 3.1.

2. A viscoelastic contact problem

In this section we introduce the classical formulation of the contact problem and list the assumptions on the data. First of all, we present the notation we shall use and preliminaries related to the contact model. More exactly, we denote by ๐•Šd(d=1,2,3)\mathbb{S}^{d}(d=1,2,3) the space of second-order symmetric tensors on โ„d\mathbb{R}^{d} and we define the following inner products and norms

๐’–โ‹…๐’—=uivi,โ€–๐’—โ€–=(๐’—โ‹…๐’—)12 for all ๐’–,๐’—โˆˆโ„d\displaystyle\boldsymbol{u}\cdot\boldsymbol{v}=u_{i}v_{i},\quad\|\boldsymbol{v}\|=(\boldsymbol{v}\cdot\boldsymbol{v})^{\frac{1}{2}}\quad\text{ for all }\boldsymbol{u},\boldsymbol{v}\in\mathbb{R}^{d}
๐ˆโ‹…๐‰=ฯƒijฯ„ij,โ€–๐‰โ€–=(๐‰โ‹…๐‰)12 for all ๐ˆ,๐‰โˆˆ๐•Šd\displaystyle\boldsymbol{\sigma}\cdot\boldsymbol{\tau}=\sigma_{ij}\tau_{ij},\quad\|\boldsymbol{\tau}\|=(\boldsymbol{\tau}\cdot\boldsymbol{\tau})^{\frac{1}{2}}\quad\text{ for all }\boldsymbol{\sigma},\boldsymbol{\tau}\in\mathbb{S}^{d}

Let ฮฉโŠ‚โ„d\Omega\subset\mathbb{R}^{d} be a bounded domain with Lipschitz continuous boundary ฮ“\Gamma and let ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3} be three measurable parts of ฮ“\Gamma such that meas (ฮ“1)>0\left(\Gamma_{1}\right)>0. We use the notation ๐’™=(xi)\boldsymbol{x}=\left(x_{i}\right) for a typical point in ฮฉโˆชฮ“\Omega\cup\Gamma and we denote by ๐’—=(vi)\boldsymbol{v}=\left(v_{i}\right) the outward unit normal at ฮ“\Gamma. The indices i,j,k,li,j,k,l run between 1 and dd and the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable, e.g. ui,j=โˆ‚ui/โˆ‚xju_{i,j}=\partial u_{i}/\partial x_{j}. Moreover, we consider the Hilbert spaces

V={๐’—=(vi)โˆˆH1(ฮฉ)d:๐’—=๐ŸŽ on ฮ“1}Q={๐‰=(ฯ„ij)โˆˆL2(ฮฉ)dร—d:ฯ„ij=ฯ„ji}\begin{gathered}V=\left\{\boldsymbol{v}=\left(v_{i}\right)\in H^{1}(\Omega)^{d}:\boldsymbol{v}=\mathbf{0}\text{ on }\Gamma_{1}\right\}\\ Q=\left\{\boldsymbol{\tau}=\left(\tau_{ij}\right)\in L^{2}(\Omega)^{d\times d}:\tau_{ij}=\tau_{ji}\right\}\end{gathered}

endowed with the inner products

(๐’–,๐’—)V=โˆซฮฉ๐œบ(๐’–)โ‹…๐œบ(๐’—)๐‘‘x,(๐ˆ,๐‰)Q=โˆซฮฉ๐ˆโ‹…๐‰๐‘‘x(\boldsymbol{u},\boldsymbol{v})_{V}=\int_{\Omega}\boldsymbol{\varepsilon}(\boldsymbol{u})\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx,\quad(\boldsymbol{\sigma},\boldsymbol{\tau})_{Q}=\int_{\Omega}\boldsymbol{\sigma}\cdot\boldsymbol{\tau}dx

and the associated norms โˆฅโ‹…โˆฅV\|\cdot\|_{V} and โˆฅโ‹…โˆฅQ\|\cdot\|_{Q}, respectively. Here ๐œบ\boldsymbol{\varepsilon} represents the deformation operator given by

๐œบ(๐’—)=(ฮตij(๐’—)),ฮตij(๐’—)=12(vi,j+vj,i) for all ๐’—โˆˆH1(ฮฉ)d.\boldsymbol{\varepsilon}(\boldsymbol{v})=\left(\varepsilon_{ij}(\boldsymbol{v})\right),\quad\varepsilon_{ij}(\boldsymbol{v})=\frac{1}{2}\left(v_{i,j}+v_{j,i}\right)\quad\text{ for all }\boldsymbol{v}\in H^{1}(\Omega)^{d}.

For an element ๐’—โˆˆV\boldsymbol{v}\in V we still write ๐’—\boldsymbol{v} for the trace of ๐’—\boldsymbol{v} on the boundary and we denote by vฮฝv_{\nu} and ๐’—ฯ„\boldsymbol{v}_{\tau} the normal and tangential components of ๐’—\boldsymbol{v} on ฮ“\Gamma, given by vฮฝ=๐’—โ‹…๐’—,๐’—ฯ„=๐’—โˆ’vฮฝ๐’—v_{\nu}=\boldsymbol{v}\cdot\boldsymbol{v},\boldsymbol{v}_{\tau}=\boldsymbol{v}-v_{\nu}\boldsymbol{v}. We recall that there exists a positive constant c0c_{0} such that

โ€–๐’—โ€–L2(ฮ“3)dโ‰คc0โ€–๐’—โ€–V for all ๐’—โˆˆV.\|\boldsymbol{v}\|_{L^{2}\left(\Gamma_{3}\right)^{d}}\leq c_{0}\|\boldsymbol{v}\|_{V}\quad\text{ for all }\boldsymbol{v}\in V. (2.1)

For a function ๐ˆโˆˆQ\boldsymbol{\sigma}\in Q we use the notation ฯƒฮฝ\sigma_{\nu} and ๐ˆฯ„\boldsymbol{\sigma}_{\tau} for the normal and tangential traces, i.e. ฯƒฮฝ=(๐ˆ๐’—)โ‹…๐’—\sigma_{\nu}=(\boldsymbol{\sigma}\boldsymbol{v})\cdot\boldsymbol{v} and ๐ˆฯ„=๐ˆ๐’—โˆ’ฯƒฮฝ๐’—\boldsymbol{\sigma}_{\tau}=\boldsymbol{\sigma}\boldsymbol{v}-\sigma_{\nu}\boldsymbol{v}.

We denote by ๐โˆž\mathbf{Q}_{\infty} the space of fourth-order tensor fields given by

๐โˆž={โ„ฐ=(โ„ฐijkl):โ„ฐijkl=โ„ฐjikl=โ„ฐklijโˆˆLโˆž(ฮฉ),1โ‰คi,j,k,lโ‰คd}\mathbf{Q}_{\infty}=\left\{\mathcal{E}=\left(\mathcal{E}_{ijkl}\right):\mathcal{E}_{ijkl}=\mathcal{E}_{jikl}=\mathcal{E}_{klij}\in L^{\infty}(\Omega),\quad 1\leq i,j,k,l\leq d\right\}

and it is a real Banach space with the norm

โ€–โ„ฐโ€–๐โˆž=max1โ‰คi,j,k,lโ‰คdโกโ€–โ„ฐijklโ€–Lโˆž(ฮฉ)\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}=\max_{1\leq i,j,k,l\leq d}\left\|\mathcal{E}_{ijkl}\right\|_{L^{\infty}(\Omega)}

Moreover,

โ€–โ„ฐ๐‰โ€–Qโ‰คdโ€–โ„ฐโ€–๐โˆžโ€–๐‰โ€–Q, for all โ„ฐโˆˆ๐โˆž,๐‰โˆˆQ.\|\mathcal{E}\boldsymbol{\tau}\|_{Q}\leq d\|\mathcal{E}\|_{\mathbf{Q}_{\infty}}\|\boldsymbol{\tau}\|_{Q},\quad\text{ for all }\mathcal{E}\in\mathbf{Q}_{\infty},\boldsymbol{\tau}\in Q. (2.2)

We present the physical setting of the problem. A viscoelastic body occupies the bounded domain ฮฉ\Omega described above. The body is subjected to the action of body forces of density ๐’‡0\boldsymbol{f}_{0}. We also assume that it is fixed on ฮ“1\Gamma_{1} and surface tractions of density ๐’‡2\boldsymbol{f}_{2} act on ฮ“2\Gamma_{2}. On ฮ“3\Gamma_{3} the body is in frictionless contact with a deformable foundation. The contact process is quasistatic and we study it in the interval of time [0,T][0,T].

The classical formulation of the contact problem is the following.
Problem ๐’ฌ\mathcal{Q}. Find a displacement field ๐’–:ฮฉร—[0,T]โ†’โ„d\boldsymbol{u}:\Omega\times[0,T]\rightarrow\mathbb{R}^{d} and a stress field ๐ˆ:ฮฉร—[0,T]โ†’๐•Šd\boldsymbol{\sigma}:\Omega\times[0,T]\rightarrow\mathbb{S}^{d} such that

๐ˆ(t)=๐’œ๐œบ(๐’–(t))+โˆซ0tโ„ฌ(tโˆ’s)๐œบ(๐’–(s))๐‘‘s\displaystyle\boldsymbol{\sigma}(t)=\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t))+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds in ฮฉ\displaystyle\text{ in }\Omega (2.3)
Divโก๐ˆ(t)+๐’‡0(t)=๐ŸŽ\displaystyle\operatorname{Div}\boldsymbol{\sigma}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in ฮฉ\displaystyle\text{ in }\Omega (2.4)
๐’–(t)=๐ŸŽ\displaystyle\boldsymbol{u}(t)=\mathbf{0} on ฮ“1\displaystyle\text{ on }\Gamma_{1} (2.5)
๐ˆ(t)๐’—=๐’‡2(t)\displaystyle\boldsymbol{\sigma}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t) on ฮ“2\displaystyle\text{ on }\Gamma_{2} (2.6)
๐ˆฯ„(t)=๐ŸŽ\displaystyle\boldsymbol{\sigma}_{\tau}(t)=\mathbf{0} on ฮ“3\displaystyle\text{ on }\Gamma_{3} (2.7)

and there exists ฮพ:ฮฉร—[0,T]โ†’โ„\xi:\Omega\times[0,T]\rightarrow\mathbb{R} which satisfies

ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t)=00โ‰คฮพ(t)โ‰คFฮพ(t)=0 if uฮฝ(t)<0ฮพ(t)=F if uฮฝ(t)>0} on ฮ“3\left.\begin{array}[]{l}\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)=0\\ 0\leq\xi(t)\leq F\\ \xi(t)=0\quad\text{ if }u_{\nu}(t)<0\\ \xi(t)=F\quad\text{ if }u_{\nu}(t)>0\end{array}\right\}\quad\text{ on }\Gamma_{3}

for all tโˆˆ[0,T]t\in[0,T].
Next, we give a short description of Problem ๐’ฌ\mathcal{Q} and list the assumptions on the data. Here and below we do not indicate explicitly the dependence of various functions on the spatial variable ๐’™\boldsymbol{x}. Equation (2.3) represents
the viscoelastic constitutive law with long memory introduced in Section 1. The operators ๐’œ\mathcal{A} and โ„ฌ\mathcal{B} verify the following conditions

(a) $\mathcal{A}: \Omega \times \mathbb{S}^{d} \rightarrow \mathbb{S}^{d}$.
(b) There exists $L_{\mathcal{A}}>0$ such that
    $\left\|\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{2}\right)\right\| \leq L_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|$
        for all $\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2} \in \mathbb{S}^{d}$, almost every $\boldsymbol{x} \in \Omega$.
(c) There exists $m_{\mathcal{A}}>0$ such that
    $\left(\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{1}\right)-\mathcal{A}\left(\boldsymbol{x}, \boldsymbol{\varepsilon}_{2}\right)\right) \cdot\left(\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right) \geq m_{\mathcal{A}}\left\|\boldsymbol{\varepsilon}_{1}-\boldsymbol{\varepsilon}_{2}\right\|^{2}$
        for all $\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2} \in \mathbb{S}^{d}$, almost every $\boldsymbol{x} \in \Omega$.
(d) The mapping $\boldsymbol{x} \mapsto \mathcal{A}(\boldsymbol{x}, \boldsymbol{\varepsilon})$ is measurable on $\Omega \quad$ for all $\boldsymbol{\varepsilon} \in \mathbb{S}^{d}$.
(e) The mapping $\boldsymbol{x} \mapsto \mathcal{A}(\boldsymbol{x}, \mathbf{0})$ belongs to $Q$.
        $\mathcal{B} \in C\left([0, T] ; \mathbf{Q}_{\infty}\right)$.

Various examples and mechanical interpretation concerning constitutive laws in solid mechanics can be found in [1, 16, 19]. Equation (2.4) represents the equation of equilibrium in which Div denotes the divergence operator for tensor-valued functions

Divโก๐ˆ=ฯƒij,j for all ๐ˆโˆˆQ.\operatorname{Div}\boldsymbol{\sigma}=\sigma_{ij,j}\quad\text{ for all }\boldsymbol{\sigma}\in Q.

Conditions (2.5) and (2.6) are the displacement boundary condition and traction boundary condition, respectively. We assume that the densities of body forces and surface tractions have regularity

๐’‡0โˆˆC([0,T];L2(ฮฉ)d),๐’‡2โˆˆC([0,T];L2(ฮ“2)d).\boldsymbol{f}_{0}\in C\left([0,T];L^{2}(\Omega)^{d}\right),\quad\boldsymbol{f}_{2}\in C\left([0,T];L^{2}\left(\Gamma_{2}\right)^{d}\right). (2.11)

Equation (2.7) represents the frictionless condition. Frictionless contact problems were considered, for example, in [1, 19, 21].

Next, (2.8) is the contact condition in which ฯƒฮฝ\sigma_{\nu} denotes the normal stress and uฮฝu_{\nu} is the normal displacement. Moreover, the functions pp and FF satisfy
(a) p:โ„โ†’โ„+p:\mathbb{R}\rightarrow\mathbb{R}_{+}.
(b) There exists Lp>0L_{p}>0 such that

|p(r1)โˆ’p(r2)|โ‰คLp|r1โˆ’r2| for all r1,r2โˆˆโ„\left|p\left(r_{1}\right)-p\left(r_{2}\right)\right|\leq L_{p}\left|r_{1}-r_{2}\right|\quad\text{ for all }r_{1},r_{2}\in\mathbb{R} (2.12)

(c) (p(r1)โˆ’p(r2))(r1โˆ’r2)โ‰ฅ0\left(p\left(r_{1}\right)-p\left(r_{2}\right)\right)\left(r_{1}-r_{2}\right)\geq 0\quad for all r1,r2โˆˆโ„r_{1},r_{2}\in\mathbb{R}.
(d) p(r)=0p(r)=0 iff rโ‰ค0r\leq 0.

FโˆˆLโˆž(ฮ“3),F(๐’™)โ‰ฅ0 almost every ๐’™โˆˆฮ“3.F\in L^{\infty}\left(\Gamma_{3}\right),\quad F(\boldsymbol{x})\geq 0\text{ almost every }\boldsymbol{x}\in\Gamma_{3}. (2.13)

This condition can be derived in the following way. Let tโˆˆ[0,T]t\in[0,T]. We consider that the normal stress has an additive decomposition of the form

ฯƒv(t)=ฯƒvD(t)+ฯƒvM(t) on ฮ“3,\sigma_{v}(t)=\sigma_{v}^{D}(t)+\sigma_{v}^{M}(t)\quad\text{ on }\Gamma_{3}, (2.14)

in which ฯƒฮฝD(t)\sigma_{\nu}^{D}(t) describes the deformability of foundation and ฯƒฮฝM(t)\sigma_{\nu}^{M}(t) describes the rigidity. We assume that ฯƒฮฝD(t)\sigma_{\nu}^{D}(t) satisfies a normal compliance contact condition

โˆ’ฯƒvD(t)=p(uv(t)) on ฮ“3.-\sigma_{v}^{D}(t)=p\left(u_{v}(t)\right)\quad\text{ on }\Gamma_{3}. (2.15)

We recall that the normal compliance contact condition was first used in [22] and the term normal compliance was first introduced in [23,24].

Finally, ฯƒvM(t)\sigma_{v}^{M}(t) satisfies

{|ฯƒvM(t)|โ‰คF,ฯƒvM(t)=0 if uv(t)<0,โˆ’ฯƒvM(t)=F if uv(t)>0 on ฮ“3.\left\{\begin{array}[]{lll}\left|\sigma_{v}^{M}(t)\right|\leq F,&\sigma_{v}^{M}(t)=0&\text{ if }u_{v}(t)<0,\\ -\sigma_{v}^{M}(t)=F&&\text{ if }u_{v}(t)>0\end{array}\text{ on }\Gamma_{3}.\right.

We combine (2.14)-(2.16) and write โˆ’ฯƒvM(t)=ฮพ(t)-\sigma_{v}^{M}(t)=\xi(t) to obtain (2.8). A version of this condition including unilateral constraints was used in [2,3].

Figure 1: Figure I. Representation of the contact condition (2.8)

We present additional details of the contact condition (2.8) which is depicted in Figure 1. We assume that at a given moment tt there is a separation between the body and the foundation, i.e. uv(t)<0u_{v}(t)<0. Then, (2.12) part (d) and (2.8) show that ฯƒฮฝ(t)=0\sigma_{\nu}(t)=0, i.e. the reaction of foundation vanishes. Assume now that at the moment tt there is penetration, i.e. uฮฝ(t)>0u_{\nu}(t)>0. Then, (2.8) yields

โˆ’ฯƒv(t)=p(uv(t))+F.-\sigma_{v}(t)=p\left(u_{v}(t)\right)+F. (2.17)

This equality implies that, at the moment tt, the reaction of the foundation depends on the penetration and represents a normal compliance-type condition. Moreover, (2.8) shows that if at the moment tt we have penetration, then โˆ’ฯƒฮฝ(t)โ‰ฅF-\sigma_{\nu}(t)\geq F. Indeed, if uฮฝ(t)>0u_{\nu}(t)>0, then (2.17) holds and this implies that โˆ’ฯƒฮฝ(t)โ‰ฅF-\sigma_{\nu}(t)\geq F. We conclude that if โˆ’ฯƒฮฝ(t)<F-\sigma_{\nu}(t)<F, then there is no penetration and FF represents a yield limit of the normal pressure, under which the penetration is not possible. This kind of behaviour characterizes a rigid-elastic foundation.

In conclusion, condition (2.8) shows that when there is a separation between the bodyโ€™s surface and the foundation then the normal stress vanishes; the penetration occurs only if the normal stress reaches the critical value FF; when there is penetration, the contact follows a multivalued normal compliance contact condition. It can be interpreted physically as follows. The foundation is assumed to be made of a rigid-elastic material which allows penetration, but only if the normal stress arrives to the yield limit FF.

3. Variational formulation and regularization of Problem ๐’ฌ\mathcal{Q}

In this section we derive the variational formulation of Problem ๐’ฌ\mathcal{Q}. Moreover, we consider a regularized problem and state an existence, uniqueness and convergence result. To this end, let tโˆˆ[0,T],ฯ>0t\in[0,T],\rho>0 and ๐’—โˆˆV\boldsymbol{v}\in V be given. We assume in what follows that ( ๐’–,๐ˆ\boldsymbol{u},\boldsymbol{\sigma} ) are sufficiently regular functions that satisfy (2.3)-(2.8). We recall the following Greenโ€™s formula

โˆซฮฉ๐ˆ(t)โ‹…๐œบ(๐’—)๐‘‘x+โˆซฮฉDivโก๐ˆ(t)โ‹…๐’—๐‘‘x=โˆซฮ“๐ˆ(t)๐’—โ‹…๐’—๐‘‘a for all ๐’—โˆˆV\int_{\Omega}\boldsymbol{\sigma}(t)\cdot\boldsymbol{\varepsilon}(\boldsymbol{v})dx+\int_{\Omega}\operatorname{Div}\boldsymbol{\sigma}(t)\cdot\boldsymbol{v}dx=\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot\boldsymbol{v}da\quad\text{ for all }\boldsymbol{v}\in V (3.1)

Next, we take ๐’—:=๐’—โˆ’๐’–(t)\boldsymbol{v}:=\boldsymbol{v}-\boldsymbol{u}(t) in (3.1) and use (2.4) to see that

โˆซฮฉ๐ˆ(t)โ‹…(๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))๐‘‘x=โˆซฮฉ๐’‡0(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘x+โˆซฮ“๐ˆ(t)๐’—โ‹…(๐’—โˆ’๐’–(t))๐‘‘a.\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx+\int_{\Gamma}\boldsymbol{\sigma}(t)\boldsymbol{v}\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da.

We split the surface integral over ฮ“1,ฮ“2\Gamma_{1},\Gamma_{2} and ฮ“3\Gamma_{3} and taking into account (2.7) we obtain

โˆซฮฉ๐ˆ(t)โ‹…(๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))๐‘‘x=โˆซฮฉ๐’‡0(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘x\displaystyle\int_{\Omega}\boldsymbol{\sigma}(t)\cdot(\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))dx=\int_{\Omega}\boldsymbol{f}_{0}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))dx (3.2)
+โˆซฮ“2๐’‡2(t)โ‹…(๐’—โˆ’๐’–(t))๐‘‘a+โˆซฮ“3ฯƒv(t)(vvโˆ’uv(t))๐‘‘a\displaystyle\quad+\int_{\Gamma_{2}}\boldsymbol{f}_{2}(t)\cdot(\boldsymbol{v}-\boldsymbol{u}(t))da+\int_{\Gamma_{3}}\sigma_{v}(t)\left(v_{v}-u_{v}(t)\right)da

We use (2.8) and assumption (2.13) to deduce that

F(vv+โˆ’uv+(t))โ‰ฅฮพ(t)(vvโˆ’uv(t)) on ฮ“3,F\left(v_{v}^{+}-u_{v}^{+}(t)\right)\geq\xi(t)\left(v_{v}-u_{v}(t)\right)\quad\text{ on }\Gamma_{3}, (3.3)

where r+=maxโก{r,0}r^{+}=\max\{r,0\} for all rโˆˆโ„r\in\mathbb{R}. We again use (2.8) and (3.3) to find that

โˆซฮ“3ฯƒฮฝ(t)(vฮฝโˆ’uฮฝ(t))๐‘‘a\displaystyle\int_{\Gamma_{3}}\sigma_{\nu}(t)\left(v_{\nu}-u_{\nu}(t)\right)da (3.4)
โ‰ฅโˆ’โˆซฮ“3p(uฮฝ(t))(vฮฝโˆ’uฮฝ(t))๐‘‘aโˆ’โˆซฮ“3F(vฮฝ+โˆ’uฮฝ+(t))๐‘‘a\displaystyle\quad\geq-\int_{\Gamma_{3}}p\left(u_{\nu}(t)\right)\left(v_{\nu}-u_{\nu}(t)\right)da-\int_{\Gamma_{3}}F\left(v_{\nu}^{+}-u_{\nu}^{+}(t)\right)da

We apply Riesz representation theorem to define the function ๐’‡:[0,T]โ†’V\boldsymbol{f}:[0,T]\rightarrow V by

(๐’‡(t),๐’—)V=(๐’‡0(t),๐’—)L2(ฮฉ)d+(๐’‡2(t),๐’—)L2(ฮ“2)d for all ๐’—โˆˆV.(\boldsymbol{f}(t),\boldsymbol{v})_{V}=\left(\boldsymbol{f}_{0}(t),\boldsymbol{v}\right)_{L^{2}(\Omega)^{d}}+\left(\boldsymbol{f}_{2}(t),\boldsymbol{v}\right)_{L^{2}\left(\Gamma_{2}\right)^{d}}\quad\text{ for all }\boldsymbol{v}\in V. (3.5)

It follows from (2.11) that this function has regularity

๐’‡โˆˆC([0,T];V).\boldsymbol{f}\in C([0,T];V). (3.6)

Finally, we combine equality (3.2), inequality (3.4), constitutive law (2.3) and (3.5) to obtain the following variational formulation of Problem ๐’ฌ\mathcal{Q}.

Problem ๐’ฌV\mathcal{Q}^{V}. Find a displacement field ๐’–:[0,T]โ†’V\boldsymbol{u}:[0,T]\rightarrow V such that, for all tโˆˆ[0,T]t\in[0,T], the following inequality holds:

(๐’œ๐œบ(๐’–(t)),๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q+(โˆซ0tโ„ฌ(tโˆ’s)๐œบ(๐’–(s))๐‘‘s,๐œบ(๐’—)โˆ’๐œบ(๐’–(t)))Q\displaystyle(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}(t)),\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t)))_{Q}+\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds,\boldsymbol{\varepsilon}(\boldsymbol{v})-\boldsymbol{\varepsilon}(\boldsymbol{u}(t))\right)_{Q} (3.7)
+โˆซฮ“3p(uv(t))(vvโˆ’uv(t))๐‘‘a+โˆซฮ“3F(vv+โˆ’uv+(t))๐‘‘aโ‰ฅ(๐’‡(t),๐’—โˆ’๐’–(t))V for all ๐’—โˆˆV\displaystyle\quad+\int_{\Gamma_{3}}p\left(u_{v}(t)\right)\left(v_{v}-u_{v}(t)\right)da+\int_{\Gamma_{3}}F\left(v_{v}^{+}-u_{v}^{+}(t)\right)da\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\text{ for all }\boldsymbol{v}\in V

The previous variational formulation leads to a history-dependent variational inequality involving a nondifferentiable term. To avoid this difficulty, we use a regularity procedure. Moreover, condition (2.8) can be written in the following equivalent form

ฯƒฮฝ(t)+p(uฮฝ(t))+ฮพ(t)=00โ‰คฮพ(t)โ‰คFฮพ(t)=Fuฮฝ+(t)|uฮฝ(t)|=F2(1+uฮฝ(t)|uฮฝ(t)|) if uฮฝ(t)โ‰ 0} on ฮ“3.\left.\begin{array}[]{l}\sigma_{\nu}(t)+p\left(u_{\nu}(t)\right)+\xi(t)=0\\ 0\leq\xi(t)\leq F\\ \xi(t)=F\frac{u_{\nu}^{+}(t)}{\left|u_{\nu}(t)\right|}=\frac{F}{2}\left(1+\frac{u_{\nu}(t)}{\left|u_{\nu}(t)\right|}\right)\text{ if }u_{\nu}(t)\neq 0\end{array}\right\}\text{ on }\Gamma_{3}.

Replacing the non-differentiable absolute value |uv(t)|\left|u_{v}(t)\right| we obtain the following regularized contact problem.

Problem ๐’ฌฯ\mathcal{Q}_{\rho}. Find a displacement field ๐’–ฯ:ฮฉร—[0,T]โ†’โ„d\boldsymbol{u}_{\rho}:\Omega\times[0,T]\rightarrow\mathbb{R}^{d} and a stress field ๐ˆฯ:ฮฉร—[0,T]โ†’๐•Šd\boldsymbol{\sigma}_{\rho}:\Omega\times[0,T]\rightarrow\mathbb{S}^{d} such that

๐ˆฯ(t)=๐’œ๐œบ(๐’–ฯ(t))+โˆซ0tโ„ฌ(tโˆ’s)๐œบ(๐’–ฯ(s))๐‘‘s\displaystyle\boldsymbol{\sigma}_{\rho}(t)=\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right)+\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right)ds in ฮฉ\displaystyle\text{ in }\Omega (3.9)
Divโก๐ˆฯ(t)+๐’‡0(t)=๐ŸŽ\displaystyle\operatorname{Div}\boldsymbol{\sigma}_{\rho}(t)+\boldsymbol{f}_{0}(t)=\mathbf{0} in ฮฉ\displaystyle\text{ in }\Omega (3.10)
๐’–ฯ(t)=๐ŸŽ\displaystyle\boldsymbol{u}_{\rho}(t)=\mathbf{0} on ฮ“1\displaystyle\text{ on }\Gamma_{1} (3.11)
๐ˆฯ(t)๐’—=๐’‡2(t)\displaystyle\boldsymbol{\sigma}_{\rho}(t)\boldsymbol{v}=\boldsymbol{f}_{2}(t) on ฮ“2\displaystyle\text{ on }\Gamma_{2} (3.12)
๐ˆฯฯ„(t)=๐ŸŽ\displaystyle\boldsymbol{\sigma}_{\rho\tau}(t)=\mathbf{0} on ฮ“3\displaystyle\text{ on }\Gamma_{3} (3.13)
ฯƒฯv(t)+p(uฯv(t))+F2(1+uฯv(t)uฯv(t)2+ฯ2)=0\displaystyle\sigma_{\rho v}(t)+p\left(u_{\rho v}(t)\right)+\frac{F}{2}\left(1+\frac{u_{\rho v}(t)}{\sqrt{u_{\rho v}(t)^{2}+\rho^{2}}}\right)=0 on ฮ“3\displaystyle\text{ on }\Gamma_{3} (3.14)

for all tโˆˆ[0,T]t\in[0,T].
Note that here and below uฯฮฝu_{\rho\nu} is the normal component of the displacement field ๐’–ฯ\boldsymbol{u}_{\rho} and ฯƒฯฮฝ,๐ˆฯฯ„\sigma_{\rho\nu},\boldsymbol{\sigma}_{\rho\tau} represent the normal and tangential components of the stress tensor ๐ˆฯ\boldsymbol{\sigma}_{\rho}, respectively. The equations and boundary conditions in problem (3.9)-(3.14) have a similar interpretation as those in problem (2.3)-(2.8). The difference arises in the fact that here we replace the multivalued normal compliance contact condition (2.8) with the single-valued normal compliance condition (3.14). In this condition ฯ\rho represents a regularization parameter. We recall that regularizations of Coulomb friction law were considered in [16,25].

Using similar arguments as those used in the case of Problem ๐’ฌ\mathcal{Q}, we obtain the following variational formulation of Problem ๐’ฌฯ\mathcal{Q}_{\rho}.
Problem ๐’ฌฯV\mathcal{Q}_{\rho}^{V}. Find a displacement field ๐’–ฯ:[0,T]โ†’V\boldsymbol{u}_{\rho}:[0,T]\rightarrow V such that, for all tโˆˆ[0,T]t\in[0,T], the following equality holds:

(๐’œ๐œบ(๐’–ฯ(t)),๐œบ(๐’—))Q+(โˆซ0tโ„ฌ(tโˆ’s)๐œบ(๐’–ฯ(s))๐‘‘s,๐œบ(๐’—))Q\displaystyle\left(\mathcal{A}\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q}+\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}\left(\boldsymbol{u}_{\rho}(s)\right)ds,\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (3.15)
+โˆซฮ“3p(uฯv(t))vv๐‘‘a+โˆซฮ“3F2(1+uฯv(t)uฯv2(t)+ฯ2)vv๐‘‘a=(๐’‡(t),๐’—)V for all ๐’—โˆˆV\displaystyle\quad+\int_{\Gamma_{3}}p\left(u_{\rho v}(t)\right)v_{v}da+\int_{\Gamma_{3}}\frac{F}{2}\left(1+\frac{u_{\rho v}(t)}{\sqrt{u_{\rho v}^{2}(t)+\rho^{2}}}\right)v_{v}da=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\text{ for all }\boldsymbol{v}\in V

We have the following existence, uniqueness and convergence result.
Theorem 3.1 Assume that (2.9)-(2.13) hold. Then:
(1) Problem ๐’ฌV\mathcal{Q}^{V} has a unique solution ๐’–โˆˆC([0,T];V)\boldsymbol{u}\in C([0,T];V);
(2) for each ฯ>0\rho>0 Problem ๐’ฌฯV\mathcal{Q}_{\rho}^{V} has a unique solution ๐’–ฯโˆˆC([0,T];V)\boldsymbol{u}_{\rho}\in C([0,T];V);
(3) the solution of Problem ๐’ฌฯV\mathcal{Q}_{\rho}^{V} converges to the solution of Problem ๐’ฌV\mathcal{Q}^{V}, that is

โ€–๐’–ฯ(t)โˆ’๐’–(t)โ€–Vโ†’0 as ฯโ†’0\left\|\boldsymbol{u}_{\rho}(t)-\boldsymbol{u}(t)\right\|_{V}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (3.16)

for all tโˆˆ[0,T]t\in[0,T].
The convergence result (3.16) is important from a mechanical point of view. More exactly, it shows that the weak solution of viscoelastic contact problem with multivalued normal compliance contact condition may be approached as closely as one wishes by the solution of a viscoelastic contact problem with single-valued normal compliance condition, with a sufficiently small regularization parameter. Note that convergence (3.16) above is understood in the following sense: for each tโˆˆ[0,T]t\in[0,T] and for every sequence {ฯn}โŠ‚โ„+\left\{\rho_{n}\right\}\subset\mathbb{R}_{+}converging to zero as nโ†’โˆžn\rightarrow\infty we have ๐’–ฯn(t)โ†’๐’–(t)\boldsymbol{u}_{\rho_{n}}(t)\rightarrow\boldsymbol{u}(t) as nโ†’โˆžn\rightarrow\infty. The proof of Theorem 3.1 is given in Section 6. To this end, we use the abstract result introduced in Section 4 and proved in Section 5.

4. Abstract problem

In this section we state our main abstract result, Theorem 4.3. It represents an extension of Theorem 2.12 of [1] to a class of history-dependent variational inequalities. We consider a real Hilbert space XX with inner product (โ‹…,โ‹…)X(\cdot,\cdot)_{X} and associated norm โˆฅโ‹…โˆฅX\|\cdot\|_{X} and we use notation C([0,T];X)C([0,T];X) for the space of continuous functions defined on [0,T][0,T] with values in XX. Moreover, let A:Xโ†’X,๐’ฎ:C([0,T];X)โ†’C([0,T];X)A:X\rightarrow X,\mathcal{S}:C([0,T];X)\rightarrow C([0,T];X) be two operators, let the functional j:Xโ†’โ„j:X\rightarrow\mathbb{R} and the function f:[0,T]โ†’Xf:[0,T]\rightarrow X. We assume in what follows that AA is a strongly monotone and Lipschitz continuous operator.

{ (a) There exists mA>0 such that (Au1โˆ’Au2,u1โˆ’u2)Xโ‰ฅmAโ€–u1โˆ’u2โ€–X2 for all u1,u2โˆˆX. (b) There exists MA>0 such that โ€–Au1โˆ’Au2โ€–Xโ‰คMAโ€–u1โˆ’u2โ€–X for all u1,u2โˆˆX.\left\{\begin{array}[]{l}\text{ (a) There exists }m_{A}>0\text{ such that }\\ \quad\left(Au_{1}-Au_{2},u_{1}-u_{2}\right)_{X}\geq m_{A}\left\|u_{1}-u_{2}\right\|_{X}^{2}\\ \quad\text{ for all }u_{1},u_{2}\in X.\\ \text{ (b) There exists }M_{A}>0\text{ such that }\\ \left\|Au_{1}-Au_{2}\right\|_{X}\leq M_{A}\left\|u_{1}-u_{2}\right\|_{X}\quad\text{ for all }u_{1},u_{2}\in X.\end{array}\right.

Moreover, we assume that operator ๐’ฎ\mathcal{S} satisfies the following condition.

There exists LS>0 such that\displaystyle\text{ There exists }L_{S}>0\text{ such that } (4.2)
โ€–๐’ฎu1(t)โˆ’๐’ฎu2(t)โ€–Xโ‰คLSโˆซ0tโ€–u1(s)โˆ’u2(s)โ€–X๐‘‘s for all u1,u2โˆˆC([0,T];X), for all tโˆˆ[0,T].\displaystyle\qquad\begin{array}[]{l}\left\|\mathcal{S}u_{1}(t)-\mathcal{S}u_{2}(t)\right\|_{X}\leq L_{S}\int_{0}^{t}\left\|u_{1}(s)-u_{2}(s)\right\|_{X}ds\\ \text{ for all }u_{1},u_{2}\in C([0,T];X),\text{ for all }t\in[0,T].\end{array}

Finally, we suppose that

j:Xโ†’โ„ is a convex lower semicontinuous function j:X\rightarrow\mathbb{R}\text{ is a convex lower semicontinuous function } (4.3)

and

fโˆˆC([0,T];X).f\in C([0,T];X). (4.4)

We consider the following problem.
Problem ๐’ซ\mathcal{P}. Find a function u:[0,T]โ†’Xu:[0,T]\rightarrow X such that, for all tโˆˆ[0,T]t\in[0,T], the following inequality holds:

(Au(t),vโˆ’u(t))X+(๐’ฎu(t),vโˆ’u(t))X\displaystyle(Au(t),v-u(t))_{X}+(\mathcal{S}u(t),v-u(t))_{X} (4.5)
+j(v)โˆ’j(u(t))โ‰ฅ(f(t),vโˆ’u(t))X for all vโˆˆX\displaystyle\quad+j(v)-j(u(t))\geq(f(t),v-u(t))_{X}\quad\text{ for all }v\in X

Following the terminology introduced in [1,20][1,20] we refer to operator ๐’ฎ\mathcal{S}, which satisfies (4.2), as a historydependent operator. In addition, we refer to (4.5) as a history-dependent variational-inequality.

The unique solvability of Problem ๐’ซ\mathcal{P} is provided by the following existence and uniqueness result.
Theorem 4.1 Let XX be a Hilbert space and assume that (4.1)-(4.4) hold. Then, Problem ๐’ซ\mathcal{P} has a unique solution uโˆˆC([0,T];X)u\in C([0,T];X).

Theorem 4.1 was proved in [20] by using fixed-point arguments. It represents a crucial tool in studying the weak solvability of a large number of contact problems. We send the reader to [1] for more details.

In the particular case jโ‰ก0j\equiv 0 we have the following consequence of Theorem 4.1.
Corollary 4.2 Let XX be a Hilbert space and assume that (4.1)-(4.2) and (4.4) hold. Then, there exists a unique function uโˆˆC([0,T];X)u\in C([0,T];X) which satisfies the following equality

(Au(t),v)X+(๐’ฎu(t),v)X=(f(t),v)X for all vโˆˆX.(Au(t),v)_{X}+(\mathcal{S}u(t),v)_{X}=(f(t),v)_{X}\quad\text{ for all }v\in X.

Let ฯ>0\rho>0 be a parameter. In order to formulate the regularized problem associated to Problem ๐’ซ\mathcal{P} we consider the following family of functionals (jฯ)\left(j_{\rho}\right) which satisfies

{ (a) jฯ:Xโ†’โ„ is convex Gรขteaux differentiable, for each ฯ>0. (b) โˆ‡jฯ:Xโ†’X is a Lipschitz continuous operator, for each ฯ>0.\left\{\begin{array}[]{l}\text{ (a) }j_{\rho}:X\rightarrow\mathbb{R}\text{ is convex G\^{a}teaux differentiable, for each }\rho>0.\\ \text{ (b) }\nabla j_{\rho}:X\rightarrow X\text{ is a Lipschitz continuous operator, for each }\rho>0.\end{array}\right.
{ There exists G:โ„+โ†’โ„+such that  (a) |jฯ(v)โˆ’j(v)|โ‰คG(ฯ) for all vโˆˆX, for each ฯ>0. (b) limฯโ†’0G(ฯ)=0.\left\{\begin{array}[]{l}\text{ There exists }G:\mathbb{R}_{+}\rightarrow\mathbb{R}_{+}\text{such that }\\ \text{ (a) }\left|j_{\rho}(v)-j(v)\right|\leq G(\rho)\quad\text{ for all }v\in X,\text{ for each }\rho>0.\\ \text{ (b) }\lim_{\rho\rightarrow 0}G(\rho)=0.\end{array}\right.

The assumption made in (4.7) requires the functional jj to be approached by a sequence of more regular functionals ( jฯj_{\rho} ), since they are Gateaux differentiable. Next, we consider the following problem.
Problem ๐’ซฯ\mathcal{P}_{\rho}. Find uฯโˆˆC([0,T];X)u_{\rho}\in C([0,T];X) such that, for all tโˆˆ[0,T]t\in[0,T], equality below holds

(Auฯ(t),v)X+(๐’ฎuฯ(t),v)X+(โˆ‡jฯ(uฯ(t)),v)X=(f(t),v)X for all vโˆˆX\left(Au_{\rho}(t),v\right)_{X}+\left(\mathcal{S}u_{\rho}(t),v\right)_{X}+\left(\nabla j_{\rho}\left(u_{\rho}(t)\right),v\right)_{X}=(f(t),v)_{X}\quad\text{ for all }v\in X (4.8)

We have the following existence, uniqueness and convergence result.
Theorem 4.3 Let XX be a Hilbert space and assume that (4.1)-(4.4), (4.6) and (4.7) hold. Then:
(1) for each ฯ>0\rho>0 Problem ๐’ซฯ\mathcal{P}_{\rho} has a unique solution;
(2) the solution of Problem ๐’ซฯ\mathcal{P}_{\rho} converges to the solution of Problem ๐’ซ\mathcal{P}, that is

โ€–uฯ(t)โˆ’u(t)โ€–Xโ†’0 as ฯโ†’0\left\|u_{\rho}(t)-u(t)\right\|_{X}\rightarrow 0\quad\text{ as }\rho\rightarrow 0 (4.9)

for all tโˆˆ[0,T]t\in[0,T].

The main feature of Theorem 4.3 consists of showing that the solution of an โ€™irregularโ€™ history-dependent inequality may be approached as limit of the solutions of โ€™regularโ€™ history-dependent variational equalities.

5. Proof of Theorem 4.3\mathbf{4.3}

In this section we give in several steps the proof of Theorem 4.3. First of all, we provide the unique solvability of (4.8).

Lemma 5.1 For each ฯ>0\rho>0 there exists a unique function uฯโˆˆC([0,T];X)u_{\rho}\in C([0,T];X) which satisfies (4.8) for all tโˆˆ[0,T]t\in[0,T].

Proof. Let ฯ>0\rho>0. Taking into account assumption (4.6) we have that โˆ‡jฯ\nabla j_{\rho} is a monotone operator on XX. Moreover, using (4.1) and (4.6) we deduce that the operator Aฯ:Xโ†’XA_{\rho}:X\rightarrow X defined by

Aฯv:=Av+โˆ‡jฯ(v) for all vโˆˆXA_{\rho}v:=Av+\nabla j_{\rho}(v)\quad\text{ for all }v\in X (5.1)

is a strongly monotone and Lipschitz continuous operator on XX. Lemma 5.1 is now a consequence of Corollary 4.2.

Next, we consider the following intermediate problem.
Problem ๐’ซ~ฯ\widetilde{\mathcal{P}}_{\rho}. Find u~ฯ:[0,T]โ†’X\widetilde{u}_{\rho}:[0,T]\rightarrow X such that, for all tโˆˆ[0,T]t\in[0,T], the following equality holds:

(Au~ฯ(t),v)X+(๐’ฎu(t),v)X+(โˆ‡jฯ(u~ฯ(t)),v)X=(f(t),v)X for all vโˆˆX.\left(A\widetilde{u}_{\rho}(t),v\right)_{X}+(\mathcal{S}u(t),v)_{X}+\left(\nabla j_{\rho}\left(\widetilde{u}_{\rho}(t)\right),v\right)_{X}=(f(t),v)_{X}\quad\text{ for all }v\in X. (5.2)

Note that the difference between (4.8) and (5.2) arises in the fact that in (5.2) the operator SS is applied to a known function uu, which is the solution of (4.5). Thus, equality (5.2) is a time-dependent variational equality. In contrast, (4.8) is a history-dependent variational equality, since the operator ๐’ฎ\mathcal{S} is applied to the unknown function uฯu_{\rho}.

We have the following existence and uniqueness result.
Lemma 5.2 For each ฯ>0\rho>0 there exists a unique function u~ฯโˆˆC([0,T];X)\widetilde{u}_{\rho}\in C([0,T];X) which satisfies (5.2) for all tโˆˆ[0,T]t\in[0,T].

Proof. In addition to the operator AฯA_{\rho}, given in (5.1), we define the function f~:[0,T]โ†’X\widetilde{f}:[0,T]\rightarrow X by equality

(f~(t),v)X:=(f(t),v)X+(๐’ฎu(t),v)X for all vโˆˆX,tโˆˆ[0,T].(\tilde{f}(t),v)_{X}:=(f(t),v)_{X}+(\mathcal{S}u(t),v)_{X}\quad\text{ for all }v\in X,t\in[0,T].

We use assumptions (4.2), (4.4) and Corollary 4.2 to conclude the proof.

The next step is provided by the following weak convergence result.
Lemma 5.3 For each tโˆˆ[0,T]t\in[0,T] the sequence {u~ฯ(t)}\left\{\widetilde{u}_{\rho}(t)\right\} converges weakly to u(t)u(t), i.e.

u~ฯ(t)โ‡€u(t) in X as ฯโ†’0.\widetilde{u}_{\rho}(t)\rightharpoonup u(t)\quad\text{ in }X\text{ as }\rho\rightarrow 0. (5.3)

Proof. Let ฯ>0\rho>0 and tโˆˆ[0,T]t\in[0,T]. We use (5.2) with v:=vโˆ’u~ฯ(t)v:=v-\widetilde{u}_{\rho}(t) to obtain

(Au~ฯ(t),vโˆ’u~ฯ(t))X+(๐’ฎu(t),vโˆ’u~ฯ(t))X\displaystyle\left(A\widetilde{u}_{\rho}(t),v-\widetilde{u}_{\rho}(t)\right)_{X}+\left(\mathcal{S}u(t),v-\widetilde{u}_{\rho}(t)\right)_{X}
+(โˆ‡jฯ(u~ฯ(t)),vโˆ’u~ฯ(t))X=(f(t),vโˆ’u~ฯ(t))X for all vโˆˆX.\displaystyle\quad+\left(\nabla j_{\rho}\left(\widetilde{u}_{\rho}(t)\right),v-\widetilde{u}_{\rho}(t)\right)_{X}=\left(f(t),v-\widetilde{u}_{\rho}(t)\right)_{X}\quad\text{ for all }v\in X. (5.4)

Moreover, taking into account assumption (4.6) we deduce that

(Au~ฯ(t),vโˆ’u~ฯ(t))X+(๐’ฎu(t),vโˆ’u~ฯ(t))X\displaystyle\left(A\widetilde{u}_{\rho}(t),v-\widetilde{u}_{\rho}(t)\right)_{X}+\left(\mathcal{S}u(t),v-\widetilde{u}_{\rho}(t)\right)_{X} (5.5)
+jฯ(v)โˆ’jฯ(u~ฯ(t))โ‰ฅ(f(t),vโˆ’u~ฯ(t))X for all vโˆˆX.\displaystyle\quad+j_{\rho}(v)-j_{\rho}\left(\widetilde{u}_{\rho}(t)\right)\geq\left(f(t),v-\widetilde{u}_{\rho}(t)\right)_{X}\quad\text{ for all }v\in X.

We now take v:=0Xv:=0_{X} in (5.5) and using assumption (4.7) we have

(Au~ฯ(t),u~ฯ(t))X\displaystyle\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)\right)_{X} โ‰คโˆ’(๐’ฎu(t),u~ฯ(t))X\displaystyle\leq-\left(\mathcal{S}u(t),\widetilde{u}_{\rho}(t)\right)_{X} (5.6)
+j(0X)\displaystyle+j\left(0_{X}\right) โˆ’j(u~ฯ(t))+(f(t),u~ฯ(t))X+2G(ฯ).\displaystyle-j\left(\widetilde{u}_{\rho}(t)\right)+\left(f(t),\widetilde{u}_{\rho}(t)\right)_{X}+2G(\rho).

Assumption (4.3) implies that the functional jj is bounded below by an affine function, i.e there exists wโˆˆXw\in X and ฮฑโˆˆโ„\alpha\in\mathbb{R}, which do not depend on tt, such that

j(v)โ‰ฅ(ฯ‰,v)X+ฮฑ for all vโˆˆX.j(v)\geq(\omega,v)_{X}+\alpha\quad\text{ for all }v\in X. (5.7)

Therefore, we deduce that

(Au~ฯ(t),u~ฯ(t))Xโ‰คj(0X)โˆ’(ฯ‰,u~ฯ(t))Xโˆ’ฮฑ\displaystyle\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)\right)_{X}\leq j\left(0_{X}\right)-\left(\omega,\widetilde{u}_{\rho}(t)\right)_{X}-\alpha (5.8)
โˆ’(๐’ฎu(t),u~ฯ(t))X+(f(t),u~ฯ(t))X+2G(ฯ).\displaystyle-\left(\mathcal{S}u(t),\widetilde{u}_{\rho}(t)\right)_{X}+\left(f(t),\widetilde{u}_{\rho}(t)\right)_{X}+2G(\rho).

Using assumption (4.1) and Cauchy-Schwarz inequality it follows that

mAโ€–u~ฯ(t)โ€–X2โ‰ค\displaystyle m_{A}\left\|\widetilde{u}_{\rho}(t)\right\|_{X}^{2}\leq (โ€–A0Xโ€–X+โ€–ฯ‰โ€–X+โ€–๐’ฎu(t)โ€–X+โ€–f(t)โ€–X)โ€–u~ฯ(t)โ€–X\displaystyle\left(\left\|A0_{X}\right\|_{X}+\|\omega\|_{X}+\|\mathcal{S}u(t)\|_{X}+\|f(t)\|_{X}\right)\left\|\widetilde{u}_{\rho}(t)\right\|_{X} (5.9)
+|ฮฑ|+|j(0X)|+2G(ฯ).\displaystyle+|\alpha|+\left|j\left(0_{X}\right)\right|+2G(\rho).

We use (5.9) and inequality [x,a,bโ‰ฅ0\left[x,a,b\geq 0\right. and x2โ‰คax+bโŸนx2โ‰คa2+2b]\left.x^{2}\leq ax+b\Longrightarrow x^{2}\leq a^{2}+2b\right] to deduce that the sequence {u~ฯ(t)}\left\{\widetilde{u}_{\rho}(t)\right\} is bounded, i.e. there exists c>0c>0, which does not depend on ฯ\rho, such that

โ€–u~ฯ(t)โ€–Xโ‰คc.\left\|\widetilde{u}_{\rho}(t)\right\|_{X}\leq c. (5.10)

Therefore, it follows that there exists a subsequence of the sequence {u~ฯ(t)}\left\{\widetilde{u}_{\rho}(t)\right\}, still denoted by {u~ฯ(t)}\left\{\widetilde{u}_{\rho}(t)\right\} and an element u~(t)โˆˆX\widetilde{u}(t)\in X such that

u~ฯ(t)โ‡€u~(t) in X as ฯโ†’0.\widetilde{u}_{\rho}(t)\rightharpoonup\widetilde{u}(t)\quad\text{ in }X\text{ as }\rho\rightarrow 0. (5.11)

In the second part of the proof we investigate the properties of the element u~(t)โˆˆX\widetilde{u}(t)\in X. To this end, we take v:=u~(t)v:=\widetilde{u}(t) in (5.5) and using assumption (4.7) we have

(Au~ฯ(t),u~ฯ(t)โˆ’u~(t))Xโ‰ค(๐’ฎu(t),u~(t)โˆ’u~ฯ(t))X\displaystyle\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)-\widetilde{u}(t)\right)_{X}\leq\left(\mathcal{S}u(t),\widetilde{u}(t)-\widetilde{u}_{\rho}(t)\right)_{X} (5.12)
+j(u~(t))โˆ’j(u~ฯ(t))+2G(ฯ)+(f(t),u~ฯ(t)โˆ’u~(t))X.\displaystyle\quad+j(\widetilde{u}(t))-j\left(\widetilde{u}_{\rho}(t)\right)+2G(\rho)+\left(f(t),\widetilde{u}_{\rho}(t)-\widetilde{u}(t)\right)_{X}.

Next, we pass to the upper limit as ฯโ†’0\rho\rightarrow 0 and taking into account (5.11), (4.3) and (4.7) we deduce that

lim supฯโ†’0(Au~ฯ(t),u~ฯ(t)โˆ’u~(t))Xโ‰ค0\limsup_{\rho\rightarrow 0}\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)-\widetilde{u}(t)\right)_{X}\leq 0 (5.13)

Assumption (4.1) and convergence (5.11) yield

lim infฯโ†’0(Au~ฯ(t),u~ฯ(t)โˆ’v)Xโ‰ฅ(Au~(t),u~(t)โˆ’v)X for all vโˆˆX\liminf_{\rho\rightarrow 0}\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)-v\right)_{X}\geq(A\widetilde{u}(t),\widetilde{u}(t)-v)_{X}\quad\text{ for all }v\in X (5.14)

Next, from inequality (5.5) and assumption (4.7) we find that

(Au~ฯ(t),u~ฯ(t)โˆ’v)X+(f(t),vโˆ’u~ฯ(t))X+j(u~ฯ(t))\displaystyle\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)-v\right)_{X}+\left(f(t),v-\widetilde{u}_{\rho}(t)\right)_{X}+j\left(\widetilde{u}_{\rho}(t)\right) (5.15)
โ‰ค(๐’ฎu(t),vโˆ’u~ฯ(t))X+j(v)+2G(ฯ) for all vโˆˆX\displaystyle\quad\leq\left(\mathcal{S}u(t),v-\widetilde{u}_{\rho}(t)\right)_{X}+j(v)+2G(\rho)\quad\text{ for all }v\in X

We pass to the lower limit as ฯโ†’0\rho\rightarrow 0 in (5.15) and use assumption (4.7), convergence (5.11) and the lower semicontinuity of jj. As a result we have

lim infฯโ†’0(Au~ฯ(t),u~ฯ(t)โˆ’v)Xโ‰ค(๐’ฎu(t),vโˆ’u~(t))X\displaystyle\liminf_{\rho\rightarrow 0}\left(A\widetilde{u}_{\rho}(t),\widetilde{u}_{\rho}(t)-v\right)_{X}\leq(\mathcal{S}u(t),v-\widetilde{u}(t))_{X} (5.16)
+j(v)โˆ’j(u~(t))+(f(t),u~(t)โˆ’v)X for all vโˆˆX\displaystyle\quad+j(v)-j(\widetilde{u}(t))+(f(t),\widetilde{u}(t)-v)_{X}\quad\text{ for all }v\in X

We now combine inequalities (5.14) and (5.16) to see that

(Au~(t),vโˆ’u~(t))X+(๐’ฎu(t),vโˆ’u~(t))X\displaystyle(A\widetilde{u}(t),v-\widetilde{u}(t))_{X}+(\mathcal{S}u(t),v-\widetilde{u}(t))_{X} (5.17)
+j(v)โˆ’j(u~(t))โ‰ฅ(f(t),vโˆ’u~(t))X for all vโˆˆX\displaystyle\quad+j(v)-j(\widetilde{u}(t))\geq(f(t),v-\widetilde{u}(t))_{X}\quad\text{ for all }v\in X

Next, we take v:=u~(t)v:=\widetilde{u}(t) in (4.5) and v:=u(t)v:=u(t) in (5.17). Then, adding the resulting inequalities and using assumption (4.1) we obtain that

u(t)=u~(t)u(t)=\widetilde{u}(t) (5.18)

Lemma 5.3 is now a consequence of standard weak convergence arguments.
We proceed with the following strong convergence result.
Lemma 5.4 For each tโˆˆ[0,T]t\in[0,T] the sequence {u~ฯ(t)}\left\{\widetilde{u}_{\rho}(t)\right\} converges strongly in XX to u(t)u(t), that is

u~ฯ(t)โ†’u(t) in X as ฯโ†’0.\tilde{u}_{\rho}(t)\rightarrow u(t)\quad\text{ in }X\text{ as }\rho\rightarrow 0. (5.19)

Proof. The proof is obtained taking v:=u~(t)v:=\widetilde{u}(t) in (5.14) and using (5.13), (5.18), (4.1) and (5.3).
The last step is provided by the following strong convergence result.
Lemma 5.5 For each tโˆˆ[0,T]t\in[0,T] the sequence {uฯ(t)}\left\{u_{\rho}(t)\right\} converges strongly in XX to u(t)u(t), that is

uฯ(t)โ†’u(t) in Xas ฯโ†’0u_{\rho}(t)\rightarrow u(t)\quad\text{ in Xas }\rho\rightarrow 0 (5.20)

Proof. We use (4.8) to obtain

(Auฯ(t),vโˆ’uฯ(t))X+(๐’ฎuฯ(t),vโˆ’uฯ(t))X\displaystyle\left(Au_{\rho}(t),v-u_{\rho}(t)\right)_{X}+\left(\mathcal{S}u_{\rho}(t),v-u_{\rho}(t)\right)_{X}
+(โˆ‡jฯ(uฯ(t)),vโˆ’uฯ(t))X=(f(t),vโˆ’uฯ(t))X for all vโˆˆX\displaystyle\quad+\left(\nabla j_{\rho}\left(u_{\rho}(t)\right),v-u_{\rho}(t)\right)_{X}=\left(f(t),v-u_{\rho}(t)\right)_{X}\quad\text{ for all }v\in X (5.21)

Next, we take v:=u~ฯ(t)v:=\widetilde{u}_{\rho}(t) in (5.21) and v:=uฯ(t)v:=u_{\rho}(t) in (5.4). Then, adding the resulting equalities and using (4.1), (4.6) and Cauchy-Schwarz inequality we deduce that

โ€–uฯ(t)โˆ’u~ฯ(t)โ€–X2โ‰ค1mAโ€–๐’ฎuฯ(t)โˆ’๐’ฎu(t)โ€–Xโ€–u~ฯ(t)โˆ’uฯ(t)โ€–X\left\|u_{\rho}(t)-\widetilde{u}_{\rho}(t)\right\|_{X}^{2}\leq\frac{1}{m_{A}}\left\|\mathcal{S}u_{\rho}(t)-\mathcal{S}u(t)\right\|_{X}\left\|\widetilde{u}_{\rho}(t)-u_{\rho}(t)\right\|_{X} (5.22)

Next, we use (4.2), triangle inequality and a Gronwallโ€™s argument to obtain

โ€–uฯ(t)โˆ’u(t)โ€–Xโ‰คโ€–u~ฯ(t)โˆ’u(t)โ€–X+LSmAeTLSmAโˆซ0tโ€–u~ฯ(s)โˆ’u(s)โ€–X๐‘‘s\left\|u_{\rho}(t)-u(t)\right\|_{X}\leq\left\|\widetilde{u}_{\rho}(t)-u(t)\right\|_{X}+\frac{L_{S}}{m_{A}}e^{\frac{TL_{S}}{m_{A}}}\int_{0}^{t}\left\|\widetilde{u}_{\rho}(s)-u(s)\right\|_{X}ds (5.23)

We now use (5.10), (5.23), Lemma 5.4 and Lebesgueโ€™s convergence theorem to obtain (5.20), which concludes the proof.

We are now in position to present the proof of Theorem 4.3.
Proof. (1) The unique solvability of Problem ๐’ซฯ\mathcal{P}_{\rho} is a consequence of Lemma 5.1.
(2) The convergence (4.9) is a consequence of Lemma 5.5.

Therefore, we conclude that the proof of Theorem 4.3 is complete.

6. Proof of Theorem 3.1

In this section we give the proof of Theorem 3.1. To this end, we use Theorem 4.3 with X=VX=V. First of all we define operators A:Vโ†’V,๐’ฎ:C([0,T];V)โ†’C([0,T];V)A:V\rightarrow V,\mathcal{S}:C([0,T];V)\rightarrow C([0,T];V), and the functional j:Vโ†’โ„j:V\rightarrow\mathbb{R} by

(A๐’–,๐’—)V=(๐’œ๐œบ(๐’–),๐œบ(๐’—))Q+โˆซฮ“3p(uv)vv๐‘‘a for all ๐’–,๐’—โˆˆV\displaystyle(A\boldsymbol{u},\boldsymbol{v})_{V}=(\mathcal{A}\boldsymbol{\varepsilon}(\boldsymbol{u}),\boldsymbol{\varepsilon}(\boldsymbol{v}))_{Q}+\int_{\Gamma_{3}}p\left(u_{v}\right)v_{v}da\quad\text{ for all }\boldsymbol{u},\boldsymbol{v}\in V (6.1)
(๐’ฎ๐’–(t),๐’—)V=(โˆซ0tโ„ฌ(tโˆ’s)๐œบ(๐’–(s))๐‘‘s,๐œบ(๐’—))Q\displaystyle(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v})_{V}=\left(\int_{0}^{t}\mathcal{B}(t-s)\boldsymbol{\varepsilon}(\boldsymbol{u}(s))ds,\boldsymbol{\varepsilon}(\boldsymbol{v})\right)_{Q} (6.2)
 for all ๐’–โˆˆC([0,T];V),๐’—โˆˆV\displaystyle\quad\text{ for all }\boldsymbol{u}\in C([0,T];V),\boldsymbol{v}\in V
j(๐’—)โˆ’=โˆซฮ“3Fvv+๐‘‘a for all ๐’—โˆˆV\displaystyle j(\boldsymbol{v})_{-}=\int_{\Gamma_{3}}Fv_{v}^{+}da\quad\text{ for all }\boldsymbol{v}\in V (6.3)

Then, it is easy to see that Problem ๐’ฌV\mathcal{Q}^{V} is equivalent to the problem of finding a function ๐’–:[0,T]โ†’V\boldsymbol{u}:[0,T]\rightarrow V such that, for all tโˆˆ[0,T]t\in[0,T], the following inequality holds

(A๐’–(t),๐’—โˆ’๐’–(t))V+(๐’ฎ๐’–(t),๐’—โˆ’๐’–(t))V\displaystyle(A\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}+(\mathcal{S}\boldsymbol{u}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V} (6.4)
+j(๐’—)โˆ’j(๐’–(t))โ‰ฅ(๐’‡(t),๐’—โˆ’๐’–(t))V for all ๐’—โˆˆV.\displaystyle\quad+j(\boldsymbol{v})-j(\boldsymbol{u}(t))\geq(\boldsymbol{f}(t),\boldsymbol{v}-\boldsymbol{u}(t))_{V}\quad\text{ for all }\boldsymbol{v}\in V.

Moreover, for each ฯ>0\rho>0, we define operator Pฯ:Vโ†’VP_{\rho}:V\rightarrow V by

(Pฯ๐’–,๐’—)V=โˆซฮ“3F2(1+uvuv2+ฯ2)vv๐‘‘a for all ๐’–,๐’—โˆˆV\left(P_{\rho}\boldsymbol{u},\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}\frac{F}{2}\left(1+\frac{u_{v}}{\sqrt{u_{v}^{2}+\rho^{2}}}\right)v_{v}da\quad\text{ for all }\boldsymbol{u},\boldsymbol{v}\in V (6.5)

Therefore, Problem ๐’ฌฯV\mathcal{Q}_{\rho}^{V} is equivalent to the problem of finding a function ๐’–ฯ:[0,T]โ†’V\boldsymbol{u}_{\rho}:[0,T]\rightarrow V such that, for all tโˆˆ[0,T]t\in[0,T], the following equality holds

(A๐’–ฯ(t),๐’—)V+(๐’ฎ๐’–ฯ(t),๐’—)V+(Pฯ๐’–ฯ(t),๐’—)V=(๐’‡(t),๐’—)V for all ๐’—โˆˆV.\left(A\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}+\left(\mathcal{S}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}+\left(P_{\rho}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\text{ for all }\boldsymbol{v}\in V. (6.6)

Using assumptions (2.9), (2.12) and inequality (2.1) we deduce that the operator AA, defined in (6.1), verifies (4.1) with MA=L๐’œ+c02LpM_{A}=L_{\mathcal{A}}+c_{0}^{2}L_{p} and mA=m๐’œm_{A}=m_{\mathcal{A}}.

Next, a simple calculation based on inequality (2.2) and assumption (2.10) shows that

โ€–๐’ฎ๐’–1(t)โˆ’๐’ฎ๐’–2(t)โ€–Vโ‰คdmaxrโˆˆ[0,T]โกโ€–โ„ฌ(r)โ€–๐โˆžโˆซ0tโ€–๐’–1(s)โˆ’๐’–2(s)โ€–V๐‘‘s\displaystyle\left\|\mathcal{S}\boldsymbol{u}_{1}(t)-\mathcal{S}\boldsymbol{u}_{2}(t)\right\|_{V}\leq d\max_{r\in[0,T]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}\int_{0}^{t}\left\|\boldsymbol{u}_{1}(s)-\boldsymbol{u}_{2}(s)\right\|_{V}ds (6.7)
 for all ๐’–1,๐’–2โˆˆC([0,T];V),tโˆˆ[0,T]\displaystyle\text{ for all }\boldsymbol{u}_{1},\boldsymbol{u}_{2}\in C([0,T];V),t\in[0,T]

The previous inequality implies that ๐’ฎ\mathcal{S} satisfies (4.2) with LS=dmaxrโˆˆ[0,T]โกโ€–โ„ฌ(r)โ€–๐โˆžL_{S}=d\max_{r\in[0,T]}\|\mathcal{B}(r)\|_{\mathbf{Q}_{\infty}}.

As in [2] we use assumption (2.13) and inequality (2.1) to see that the functional jj defined by (6.3), is a seminorm on VV and verifies

j(๐’—)โ‰คc0(measโก(ฮ“3))1/2โ€–Fโ€–Lโˆž(ฮ“3)โ€–๐’—โ€–V for all ๐’—โˆˆV.j(\boldsymbol{v})\leq c_{0}\left(\operatorname{meas}\left(\Gamma_{3}\right)\right)^{1/2}\|F\|_{L^{\infty}\left(\Gamma_{3}\right)}\|\boldsymbol{v}\|_{V}\quad\text{ for all }\boldsymbol{v}\in V. (6.8)

We deduce that jj satisfies (4.3). Taking into account the previous results and (3.6) we conclude that the hypotheses of Theorem 4.1 are fulfilled. Therefore, the variational inequality (6.4) has a unique solution ๐’–โˆˆC([0,T];V)\boldsymbol{u}\in C([0,T];V).

Next, we show the unique solvability of variational equality (6.6). To this end, let ฯ>0\rho>0 and ๐’–,๐’—โˆˆV\boldsymbol{u},\boldsymbol{v}\in V. Using (2.1) we deduce that the operator PฯP_{\rho}, defined in (6.5), verifies

(Pฯ๐’–โˆ’Pฯ๐’—,๐’–โˆ’๐’—)Vโ‰ฅ0 for all ๐’–,๐’—โˆˆV\left(P_{\rho}\boldsymbol{u}-P_{\rho}\boldsymbol{v},\boldsymbol{u}-\boldsymbol{v}\right)_{V}\geq 0\quad\text{ for all }\boldsymbol{u},\boldsymbol{v}\in V (6.9)

and

โ€–Pฯ๐’–โˆ’Pฯ๐’—โ€–Vโ‰คc02ฯโ€–Fโ€–Lโˆž(ฮ“3)โ€–๐’–โˆ’๐’—โ€–V for all ๐’–,๐’—โˆˆV.\left\|P_{\rho}\boldsymbol{u}-P_{\rho}\boldsymbol{v}\right\|_{V}\leq\frac{c_{0}^{2}}{\rho}\|F\|_{L^{\infty}\left(\Gamma_{3}\right)}\|\boldsymbol{u}-\boldsymbol{v}\|_{V}\quad\text{ for all }\boldsymbol{u},\boldsymbol{v}\in V. (6.10)

Therefore, the operator

๐’—โ†’A๐’—+Pฯ๐’— for all ๐’—โˆˆV\boldsymbol{v}\rightarrow A\boldsymbol{v}+P_{\rho}\boldsymbol{v}\quad\text{ for all }\boldsymbol{v}\in V

is strongly monotone and Lipschitz continuous. We apply Corollary 4.2 to conclude that the variational equality (6.6) has a unique solution ๐’–ฯโˆˆC([0,T];V)\boldsymbol{u}_{\rho}\in C([0,T];V).

We are now in position to present the proof of Theorem 3.1.
(1) The unique solvability of Problem ๐’ฌV\mathcal{Q}^{V} follows from the unique solvability of (6.4).
(2) The unique solvability of Problem ๐’ฌฯV\mathcal{Q}_{\rho}^{V} follows from the unique solvability of (6.6).
(3) Let ฯ>0\rho>0. We define the functional jฯ:Vโ†’โ„j_{\rho}:V\rightarrow\mathbb{R} by

jฯ(๐’—)=โˆซฮ“3F2(vv2+ฯ2โˆ’ฯ+vv)๐‘‘a for all ๐’—โˆˆVj_{\rho}(\boldsymbol{v})=\int_{\Gamma_{3}}\frac{F}{2}\left(\sqrt{v_{v}^{2}+\rho^{2}}-\rho+v_{v}\right)da\quad\text{ for all }\boldsymbol{v}\in V (6.11)

We deduce that jฯj_{\rho} is Gรขteaux differentiable and

(โˆ‡jฯ(๐’–),๐’—)V=โˆซฮ“3F2(1+uvuv2+ฯ2)vv๐‘‘a for all ๐’–,๐’—โˆˆV\left(\nabla j_{\rho}(\boldsymbol{u}),\boldsymbol{v}\right)_{V}=\int_{\Gamma_{3}}\frac{F}{2}\left(1+\frac{u_{v}}{\sqrt{u_{v}^{2}+\rho^{2}}}\right)v_{v}da\quad\text{ for all }\boldsymbol{u},\boldsymbol{v}\in V (6.12)

Taking into account (6.5) and (6.12) we see that (6.6) is equivalent with

(A๐’–ฯ(t),๐’—)V+(๐’ฎ๐’–ฯ(t),๐’—)V+(โˆ‡jฯ(๐’–ฯ(t)),๐’—)V=(๐’‡(t),๐’—)V for all ๐’—โˆˆV.\left(A\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}+\left(\mathcal{S}\boldsymbol{u}_{\rho}(t),\boldsymbol{v}\right)_{V}+\left(\nabla j_{\rho}\left(\boldsymbol{u}_{\rho}(t)\right),\boldsymbol{v}\right)_{V}=(\boldsymbol{f}(t),\boldsymbol{v})_{V}\quad\text{ for all }\boldsymbol{v}\in V. (6.13)

Moreover, (6.5), (6.12) and (6.9) imply the convexity of jฯj_{\rho}. Therefore, jฯj_{\rho} and โˆ‡jฯ\nabla j_{\rho} satisfy (4.6). Finally, using (6.3), (6.11) and assumption (2.13) we deduce that the functionals jj and jฯj_{\rho} verify (4.7) with

G(ฯ)=ฯ2โˆซฮ“3F๐‘‘aG(\rho)=\frac{\rho}{2}\int_{\Gamma_{3}}Fda

Convergence (3.16) is now a direct consequence of Theorem 4.3.
A numerical analysis and simulations of convergence result (3.16) will be provided in our next paper. Moreover, the extension of (4.9) to convergence results on the space C([0,T];X)C([0,T];X) remains an open problem which will be investigated in the future.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

[1] Sofonea, M, and Matei, A. Mathematical models in contact mechanics. Cambridge: Cambridge University Press, 2012.
[2] Sofonea, M, and Pฤƒtrulescu, F. Penalization of history-dependent variational inequalities. European J Appl Math 2014; 25: 155-176.
[3] Sofonea, M, Han, W, and Barboteu, M. Analysis of a viscoelastic contact problem with multivalued normal compliance and unilateral constraint. Comput Methods Appl Mech Engrg 2013; 264: 12-22.
[4] Baiocchi, C, and Capelo, A. Variational and quasivariational inequalities: applications to free-boundary problems. Chichester: John Wiley & Sons, 1984.
[5] Brรฉzis, H. Equations et inรฉquations non linรฉaires dans les espaces vectoriels en dualitรฉ. Ann Inst Fourier 1968; 18: 115-175.
[6] Brรฉzis, H. Problรฉmes unilatรฉraux. J Math Pures Appl 1972; 51: 1-168.
[7] Kikuchi, N, and Oden, JT. Theory of variational inequalities with applications to problems of flow through porous media. Int JJ Engng Sci 1980; 18: 1173-1284.
[8] Kinderlehrer, D, and Stampacchia, G. An introduction to variational inequalities and their applications. Philadelphia, PA: SIAM, 2000.
[9] Panagiotopoulos, PD. Inequality problems in mechanics and applications. Boston, MA: Birkhรคuser, 1985.
[10] Glowinski, R, Lions, JL, and Trรฉmoliรจres R. Numerical analysis of variational inegalities. Amsterdam: North-Holland, 1981.
[11] Glowinski, R. Numerical methods for nonlinear variational problems. New York: Springer-Verlag, 1984.
[12] Haslinger, J, Hlavรกฤek, I, and NecวŽs, J. Numerical methods for unilateral problems in solid mechanics. In Ciarlet, PG and Lions, J-L (eds) Handbook of Numerical Analysis, vol. IV. Amsterdam: North-Holland, 1996.
[13] Hlavรกฤek, I, Haslinger, J, NecวŽs, J, et al. Solution of variational inequalities in mechanics. New York: Springer-Verlag, 1988.
[14] Barbu, V. Optimal control of variational inequalities. Boston, MA: Pitman, 1984.
[15] Duvaut, G, and Lions, JL. Inequalities in mechanics and physics. Berlin: Springer-Verlag, 1976.
[16] Han, W, and Sofonea, M. Quasistatic contact problems in viscoelasticity and viscoplasticity. Providence, RI: American Mathematical Society-International Press, 2002.
[17] Kikuchi, N, and Oden, JT. Contact problems in elasticity: A study of variational inequalities and finite element methods. Philadelphia, PA: SIAM, 1988.
[18] Wriggers, P. Computational contact mechanics. Chichester: John Wiley & Sons, 2002.
[19] Shillor, M, Sofonea, M and Telega, JJ. Models and analysis of quasistatic contact. Variational methods. Berlin: Springer, 2004.
[20] Sofonea, M, and Matei, A. History-dependent quasivariational inequalities arising in contact mechanics. Eur J Appl Math 2011; 22: 471-491.
[21] Pฤƒtrulescu, F, and Ramadan, A. Convergence results for contact problems with memory term. Math Rep 2015; 17(67): 24-41.
[22] Oden, JT, and Martins, JAC. Models and computational methods for dynamic friction phenomena. Comput Methods Appl Mech Engrg 1985; 52: 527-634.
[23] Klarbring, A, Mikeliฤ, A, and Shillor, M. Frictional contact problems with normal compliance. Int J Engng Sci 1988; 26: 811832.
[24] Klarbring, A, Mikeliฤ, A, and Shillor, M. On friction problems with normal compliance. Nonlinear Anal 1989; 13: 935-955.
[25] Eck, C, and Jaruลกek, J. Existence results for the semicoercive static contact problem with Coulomb friction. Nonlinear Anal 2000; 42: 961-976.

2018

Related Posts