An application of the Picard operator technique to functional integral equations

Abstract

In this paper we consider a functional integral equation of the form
\[
x(t)=g(t,x(t),x(h(t)))+\int_{a}^{t} f(s,x(h(s)))ds+\int_{a}^{b} K(s,x(h(s)))ds, \ \ t \in [a,b].
\]

Using the weakly Picard operator technique we establish existence, data dependence and comparison results for the solutions of the above equation.

Authors

V.A. Ilea
(Babes Bolyai Univ.)

D. Otrocol
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,
Technical University of Cluj-Napoca)

Keywords

Functional-integral equation; weakly Picard operators; data dependence

Cite this paper as:

V.A. Ilea, D. Otrocol, An application of the Picard operator technique to functional integral equations, J. Nonlinear Convex Anal., Vol. 18 (2017) no. 3, pp. 405-413

PDF

About this paper

Journal

Journal of Nonlinear and Convex Analysis

Publisher Name

Yokohama, Japan

DOI
Print ISSN

1345-4773

Online ISSN

1880-5221

MR

MR3649198

ZBL

Google Scholar

???

An application of the Picard operator technique to functional integral equations

Veronica Ana Ilea and Diana Otrocol
Abstract.

In this paper we consider a functional integral equation of the form

x(t)=g(t,x(t),x(h(t)))+atf(s,x(h(s)))𝑑s+abK(s,x(h(s)))𝑑s,t[a,b].x(t)\!\!=\!\!g(t,\!x(t),\!x(h(t)))\!+\!\int\nolimits_{a}^{t}\!\!f(s,\!x(h(s)))ds\!+\!\int\nolimits_{a}^{b}\!\!K(s,\!x(h(s)))ds,\!t\in[a,b].

Using the weakly Picard operator technique we establish existence, data dependence and comparison results for the solutions of the above equation.
MSC 2010: 47H10, 34K05.
Keywords: Functional-integral equation, weakly Picard operators, data dependence.

Babeş-Bolyai University, Kogălniceanu no. 1, RO 400084, Cluj-Napoca, Romania, e-mail: vdarzu@math.ubbcluj.ro.
∗∗“T. Popoviciu” Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110, Cluj-Napoca, Romania, e-mail: dotrocol@ictp.acad.ro.

1. Introduction

Integro-differential equations have been discussed in many applied fields, such as biological, physical and engineering problems. Particulary, the Fredholm-Volterra equations are interesting because they put together two types of integrals that may have different approaches from the solution point of view.

The purpose of the paper is to study existence, data dependence and comparison results for the solutions of the functional integral equations of the form

(1.1) x(t)=g(t,x(t),x(h(t)))+atf(s,x(h(s)))𝑑s+abK(s,x(h(s)))𝑑s,t[a,b].x(t)\!\!=\!\!g(t,x(t),\!x(h(t)))\!+\!\int\nolimits_{a}^{t}\!\!\!f(s,x(h(s)))ds\!+\!\int\nolimits_{a}^{b}\!\!\!K(s,x(h(s)))ds,\!\ t\in[a,b].

The new idea of this paper compared to [15] and [16] is the Fredholm term and the delay argument h(t)h(t).

The paper is organized as follows. In section 2, we recall some definitions and facts concerning the weakly Picard operator theory. In section 3, we prove first the existence and uniqueness theorem and then we give some properties of the solution regarding the order preserving property and the continuity of the solution of the problem (1.1). In the last section some applications are given.

For the basic theory of functional integral equations see [1]-[3], [6] and [7]. Fredholm-Volterra integro-differential equations were studied in [15] and [16].

2. Basic notions and results from weakly Picard operators theory

In this paper we use the terminologies and notations from [11]-[12]. For the convenience of the reader we recall some of them.

Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator.

We denote byA0=1X,A1=A,An+1:=AAn,n\;A^{0}=1_{X},\;A^{1}=A,\;A^{n+1}:=A\circ A^{n},n\in\mathbb{N} the iterates of the operator AA;

We also use the following notations:

FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed points set of AA;

I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subsets of AA;

Definition 2.1.

[11]-[12] Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a Picard operator (PO) if there exists xXx^{\ast}\in X such that:

  1. (i)

    FA={x};F_{A}=\{x^{\ast}\};

  2. (ii)

    the sequence (An(x0))n(A^{n}(x_{0}))_{n\in\mathbb{N}} converges to xx^{\ast} for all x0Xx_{0}\in X.

Definition 2.2.

[11]-[12] Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n(A^{n}(x))_{n\in\mathbb{N}} converges for all xXx\in X, and its limit ( which may depend on xx ) is a fixed point of AA.

Definition 2.3.

[11]-[12] If AA is a weakly Picard operator then we consider the operator AA^{\infty} defined by A:XX,A(x):=limnAn(x)A^{\infty}:X\rightarrow X,\ A^{\infty}(x):=\underset{n\rightarrow\infty}{\lim}A^{n}(x).

Remark 2.4.

[11]-[12]It is clear that A(X)=FA.A^{\infty}(X)=F_{A}.

The following results are very useful in the sequel.

Theorem 2.5.

[11]-[12](Characterization theorem) Let (X,d)(X,d) be a metric space and A:XXA:X\rightarrow X an operator. Then AA is WPO if and only if there exists a partition of XX, X=X= λΛXλ\underset{\lambda\in\Lambda}{\cup}X_{\lambda}, such that

  • (a)

    XλI(A)X_{\lambda}\in I(A), for all λΛ;\lambda\in\Lambda;

  • (b)

    A|Xλ:XλXλA|_{X_{\lambda}}:X_{\lambda}\rightarrow X_{\lambda} is PO, for all λΛ.\lambda\in\Lambda.

Lemma 2.6.

[11]-[12]Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA:X\rightarrow X an operator. We suppose that:

  • (i)

    AA is WPO;

  • (ii)

    AA is increasing.

Then, the operator AA^{\infty} is increasing.

Lemma 2.7.

[11]-[12](Abstract Gronwall lemma) Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA:X\rightarrow X an operator. We suppose that:

  • (i)

    AA is WPO;

  • (ii)

    AA is increasing.

If we denote by xAx_{A}^{\ast}, the unique fixed point of AA, then:

  • (a)

    xA(x)xxA;x\leq A(x)\Longrightarrow x\leq x_{A}^{\ast};

  • (b)

    xA(x)xxA.x\geq A(x)\Longrightarrow x\geq x_{A}^{\ast}.

Lemma 2.8.

[11]-[12](Abstract comparison lemma) Let (X,d,)(X,d,\leq) an ordered metric space and A,B,C:XXA,B,C:X\rightarrow X be such that: (i)(i) the operators A,B,CA,B,C are WPOs; (ii)(ii) ABCA\leq B\leq C; (iii)(iii) the operator BB is increasing. Then xyzx\leq y\leq z implies that A(x)B(y)C(z)A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).

Another important notion is

Definition 2.9.

[11]-[12]Let (X,d)(X,d) be a metric space, A:XXA:X\rightarrow X be a weakly Picard operator and c+.c\in\mathbb{R}_{+}^{\ast}. The operator AA\ is cc-weakly Picard operator iff

d(x,A(x))cd(x,A(x)),xX.d(x,A^{\infty}(x))\leq cd(x,A(x)),\ \forall x\in X.

For the cc-POs and cc-WPOs we have

Lemma 2.10.

[11]-[12] Let (X,d)(X,d) be a metric space, A,B:XXA,B:X\rightarrow X be two operators. We suppose that:

  • (i)

    the operators AA and BB are cc-WPOs;{}_{s};

  • (ii)

    there exists η+\eta\in\mathbb{R}_{+}^{\ast} such that d(A(x),B(x))η,xX.d(A(x),B(x))\leq\eta,\ \forall x\in X.

Then Hd(FA,FB)cηH_{d}(F_{A},F_{B})\leq c\eta, where HdH_{d} stands for the Pompeiu-Hausdorff functional with respect to dd.

We note that most (in the sense of Baire category) operators in the space of nonexpansive operators are (weakly) Picard operators. See, for example, the two papers by S. Reich and A. J. Zaslavski [13] and [14]. For some examples of WPOs see [4], [5] and [8]-[10].

3. The solution set of the equation (1.1)

We consider now

  • (C1)

    gC([a,b]×2;),fC([a,b]×,)g\in C([a,b]\times\mathbb{R}^{2};\mathbb{R}),\ f\in C([a,b]\times\mathbb{R},\mathbb{R)}, KC([a,b]×,)K\in C([a,b]\times\mathbb{R},\mathbb{R)}, h(t)th(t)\leq t, hC([a,b],[a1,b]),a1ah\in C([a,b],\mathbb{[}a_{1},b\mathbb{])},a_{1}\leq a;

  • (C1{}_{1}^{\prime})

    x(t)=φ(t),t[a1,a],φC([a1,a],[a,b])x(t)=\varphi(t),t\in[a_{1},a],\varphi\in C([a_{1},a],[a,b]);

  • (C2)

    there exists lg>0l_{g}>0 such that gg is Lipschitz with respect to the last two arguments, i.e.,

    |g(t,u1,u2)g(t,v1,v2)|lg(|u1v1|+|u2v2|),\left|g(t,u_{1},u_{2})-g(t,v_{1},v_{2})\right|\leq l_{g}\left(\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|\right),

    t[a,b],ui,vi,i=1,2\forall t\in[a,b],u_{i},v_{i}\in\mathbb{R},i=1,2;

  • (C3)

    there exists lf>0l_{f}>0 such that ff is Lipschitz with respect to the second argument, i.e.,

    |f(t,u)f(t,v)|lf|uv|,t[a,b],u,v;\left|f(t,u)-f(t,v)\right|\leq l_{f}\left|u-v\right|,\ \forall t\in[a,b],u,v\in\mathbb{R};
  • (C4)

    there exists lK>0l_{K}>0 such that KK is Lipschitz with respect to the second argument, i.e.,

    |K(t,u)K(t,v)|lK|uv|,t[a,b],u,v;\left|K(t,u)-K(t,v)\right|\leq l_{K}\left|u-v\right|,\ \forall t\in[a,b],u,v\in\mathbb{R};
  • (C5)

    φ(a)=g(a,x(a),x(h(a)))+abK(s,x(h(s)))𝑑s;\varphi(a)=g(a,x(a),x(h(a)))+\int\nolimits_{a}^{b}K(s,x(h(s)))ds;

  • (C6)

    2lg+(ba)(lf+lK)<1.2l_{g}+(b-a)(l_{f}+l_{K})<1.

The numbers mg,Mg,Mf,Mk>0m_{g},M_{g},M_{f},M_{k}>0 are such that

mg\displaystyle m_{g} g(t,u,v)Mg;\displaystyle\leq g(t,u,v)\leq M_{g};
|f(t,u)|\displaystyle\left|f(t,u)\right| Mf,|K(t,v)|Mk,t[a,b],u,v;\displaystyle\leq M_{f},\ \left|K(t,v)\right|\leq M_{k},\forall t\in[a,b],u,v\in\mathbb{R};
  • (C7)

    Mg+(Mf+MK)(ba)b;M_{g}+(M_{f}+M_{K})(b-a)\leq b;

  • (C8)

    aMg(Mf+MK)(ba).a\leq M_{g}-(M_{f}+M_{K})(b-a).

With respect to the equation (1.1) we consider the equation (in β\beta\in\mathbb{R})

(3.1) β=g(a,β,γ)+abK(s,x(h(s)))𝑑s.\beta=g(a,\beta,\gamma)+\int\nolimits_{a}^{b}K(s,x(h(s)))ds.

Let Sg,KS_{g,K} be the solution set of the equation (3.1). By a solution of equation (1.1) we understand a function xC([a1,b],)x\in C([a_{1},b],\mathbb{R}). So we consider the Banach space X:=(C([a1,b];),C)X:=\left(C([a_{1},b];\mathbb{R}),\left\|\cdot\right\|_{C}\right) where C\left\|\cdot\right\|_{C} is the Chebyshev norm defined by xC=supt[a,b](|x(t)|).\left\|x\right\|_{C}=\underset{t\in[a,b]}{\sup}(\left|x(t)\right|).

Let the operator B:XXB:X\rightarrow X be defined by

(3.2) B(x)(t)={φ(t),t[a1,a],g(t,x(t),x(h(t)))+atf(s,x(h(s)))𝑑s+abK(s,x(h(s)))𝑑s,t[a,b],B(x)(t)=\begin{cases}\varphi(t),&\ t\in[a_{1},a],\\ g(t,x(t),x(h(t)))\!+\!\int\nolimits_{a}^{t}f(s,x(h(s)))ds\!&\\ \quad\quad\quad+\!\int\nolimits_{a}^{b}K(s,x(h(s)))ds,&\ t\in[a,b],\end{cases}

where φ(a)=β,βSg,K\varphi(a)=\beta,\ \beta\in S_{g,K}. It is obvious that the solution set of the equation (1.1) is FB.F_{B}.

Let L>0L>0 and

CL:={yX||x(t1)x(t2)|L|t1t2|,t1,t2[a,b]}.C_{L}:=\{y\in X|\ \left|x(t_{1})-x(t_{2})\right|\leq L\left|t_{1}-t_{2}\right|,t_{1},t_{2}\in[a,b]\}.

It is easy to see that CLC_{L} is convex and compact in XX, thus it is a complete metric space with respect to dC.d_{\left\|\cdot\right\|_{C}}.

Let Xφ:={xX|x(t)=φ(t),t[a1,a]}.X_{\varphi}:=\{x\in X|\ x(t)=\varphi(t),t\in[a_{1},a]\}. Notice that X=φC([a1,b],[a,b])XφX=\underset{\varphi\in C(\mathbb{[}a_{1},b\mathbb{]},[a,b]\mathbb{)}}{\cup}X_{\varphi} is a partition of XX and we have the following lemma (see [15]).

Lemma 3.1.

We have

  • (i)

    If xFB,x\in F_{B}, then x(a)Sg,K;x(a)\in S_{g,K};

  • (ii)

    FBXββSg,K.F_{B}\cap X_{\beta}\neq\emptyset\Rightarrow\beta\in S_{g,K}.

We denote by Y:=φC[a1,a](XφCL).Y:=\underset{\varphi\in C\mathbb{[}a_{1},a\mathbb{]}}{\cup}(X_{\varphi}\cap C_{L}).

4. Main result

Our first main result is the following one:

Theorem 4.1.

We suppose that the conditions (C1)(C8)(C_{1})-(C_{8}) are satisfied. Then

B|φC([a1,b],[a,b])Xφ:YYB|_{\underset{\varphi\in C(\mathbb{[}a_{1},b\mathbb{]},[a,b]\mathbb{)}}{\cup}X_{\varphi}}:Y\rightarrow Y

is WPO and cardFB=cardSg,KcardF_{B}=cardS_{g,K}.

Proof.

From the conditions (C1)(C8)(C_{1})-(C_{8}) we have the following inequalities

a\displaystyle a B(x)(t)=φ(t)b,t[a1,a],\displaystyle\leq B(x)(t)=\varphi(t)\leq b,t\in[a_{1},a],
B(x)(t)\displaystyle B(x)(t) Mg+(Mf+MK)(ba)b,\displaystyle\leq M_{g}+(M_{f}+M_{K})(b-a)\leq b,
B(x)(t)\displaystyle B(x)(t) mg|atf(s,x(h(s)))ds||abK(s,x(h(s))ds|a,\displaystyle\geq m_{g}-\left|\int\nolimits_{a}^{t}f(s,x(h(s)))ds\right|-\left|\int\nolimits_{a}^{b}K(s,x(h(s))ds\right|\geq a,

for all xXx\in X and t[a,b].t\in[a,b]. Also we can estimate that

|B(x)(t1)B(x)(t2)|\displaystyle\left|B(x)(t_{1})-B(x)(t_{2})\right|\leq
|g(t1,x(t1),x(h(t1)))g(t2,x(t2),x(h(t2)))|\displaystyle\leq\left|g(t_{1},x(t_{1}),x(h(t_{1})))-g(t_{2},x(t_{2}),x(h(t_{2})))\right|
+|at2f(s,x(h(s)))𝑑sat2f(s,x(h(s)))𝑑s|\displaystyle\quad+\left|\int\nolimits_{a}^{t_{2}}f(s,x(h(s)))ds-\int\nolimits_{a}^{t_{2}}f(s,x(h(s)))ds\right|
+|abK(s,x(h(s)))𝑑sabK(s,x(h(s)))𝑑s|\displaystyle\quad+\left|\int\nolimits_{a}^{b}K(s,x(h(s)))ds-\int\nolimits_{a}^{b}K(s,x(h(s)))ds\right|
=lg(|t1t2|+|x(t1)x(t2)|+|x(h(t1))x(h(t2))|)\displaystyle=l_{g}(\left|t_{1}-t_{2}\right|+\left|x(t_{1})-x(t_{2})\right|+\left|x(h(t_{1}))-x(h(t_{2}))\right|)
+Mf|t1t2|\displaystyle\quad+M_{f}\left|t_{1}-t_{2}\right|
[lg(1+2L)+Mf]|t1t2|L|t1t2|,\displaystyle\leq\left[l_{g}(1+2L)+M_{f}\right]\left|t_{1}-t_{2}\right|\leq L\left|t_{1}-t_{2}\right|,

with L:=lg(1+2L)+MfL:=l_{g}(1+2L)+M_{f}, for all xCLx\in C_{L} and t1,t2[a,b].t_{1},t_{2}\in[a,b].

We consider now the function φC([a1,a],)\varphi\in C([a_{1},a],\mathbb{R}) with φ(a)Sg,K.\varphi(a)\in S_{g,K}. We denote by Bφ:=B|XφCL:XφCLXφCL.B_{\varphi}:=B|_{X_{\varphi}\cap C_{L}}:X_{\varphi}\cap C_{L}\rightarrow X_{\varphi}\cap C_{L}. It is obvious that for t[a1,a]t\in[a_{1},a] we have

|Bφ(x1)(t)Bφ(x2)(t)|=0\left|B_{\varphi}(x_{1})(t)-B_{\varphi}(x_{2})(t)\right|=0

and for t[a,b]t\in[a,b]\ we obtain that

|Bφ(x1)(t)Bφ(x2)(t)|\displaystyle\left|B_{\varphi}(x_{1})(t)-B_{\varphi}(x_{2})(t)\right|\leq
|g(t,x1(t),x1(h(t)))g(t,x2(t),x2(h(t)))|\displaystyle\leq\left|g(t,x_{1}(t),x_{1}(h(t)))-g(t,x_{2}(t),x_{2}(h(t)))\right|
+at|f(s,x1(h(s)))f(s,x2(h(s)))|𝑑s\displaystyle\quad+\int\nolimits_{a}^{t}\left|f(s,x_{1}(h(s)))-f(s,x_{2}(h(s)))\right|ds
+ab|K(s,x1(h(s))K(s,x2(h(s))|ds\displaystyle\quad+\int\nolimits_{a}^{b}\left|K(s,x_{1}(h(s))-K(s,x_{2}(h(s))\right|ds
lg(|x1(t)x2(t)|+|x1(h(t))x2(h(t))|)\displaystyle\leq l_{g}\left(\left|x_{1}(t)-x_{2}(t)\right|+\left|x_{1}(h(t))-x_{2}(h(t))\right|\right)
+lf|x1x2|+lK|x1x2|\displaystyle\quad+l_{f}\left|x_{1}-x_{2}\right|+l_{K}\left|x_{1}-x_{2}\right|
2lgx1x2C+(ba)(lf+lK)x1x2C\displaystyle\leq 2l_{g}\left\|x_{1}-x_{2}\right\|_{C}+(b-a)(l_{f}+l_{K})\left\|x_{1}-x_{2}\right\|_{C}
(2lg+(ba)(lf+lK))x1x2C.\displaystyle\leq\left(2l_{g}+(b-a)(l_{f}+l_{K})\right)\left\|x_{1}-x_{2}\right\|_{C}.

Therefore the following inequality holds

Bφ(x1)Bφ(x2)C(2lg+(ba)(lf+lK))x1x2C,\left\|B_{\varphi}(x_{1})-B_{\varphi}(x_{2})\right\|_{C}\leq\left(2l_{g}+(b-a)(l_{f}+l_{K})\right)\left\|x_{1}-x_{2}\right\|_{C},

for any x1,x2XφCL.x_{1},x_{2}\in X_{\varphi}\cap C_{L}. So the operator Bφ:=B|XφCLB_{\varphi}:=B|_{X_{\varphi}\cap C_{L}} is a contraction with the constant LB=(2lg+(ba)(lf+lK)).L_{B}=\left(2l_{g}+(b-a)(l_{f}+l_{K})\right). From the fact that BφB_{\varphi} with φ(a)Sg,K\varphi(a)\in S_{g,K} is PO and from Lemma 3.1 we have that cardFB=cardSg,KcardF_{B}=cardS_{g,K}. Moreover from Theorem 2.5 we get that BB is WPO. ∎

Next we shall study the relation between the solution of the problem (1.1) with the initial condition

(4.1) x(t)=φ(t),t[a1,a]x(t)=\varphi(t),t\in[a_{1},a]

and the subsolution of the same problem. We have

Theorem 4.2.

(Theorem of Čaplygin type) We suppose that:

  • (a)

    the conditions (C1),(C1),(C2),(C3),(C4)(C_{1}),\ (C_{1}^{\prime}),\ (C_{2}),(C_{3}),(C_{4}) and (C5)(C5) are satisfied;

  • (b)

    g(t,,):2g(t,\cdot,\cdot):\mathbb{R}^{2}\rightarrow\mathbb{R} is increasing, t[a,b]\forall t\in[a,b];

  • (c)

    f(s,),K(s,):f(s,\cdot),K(s,\cdot):\mathbb{R}\rightarrow\mathbb{R} are increasing, s[a,b]\forall s\in[a,b].

Let xx be a solution of equation (1.1) and yy a solution of the inequality

y(t)g(t,y(t),y(h(t)))+atf(s,y(h(s)))𝑑s+abK(s,y(h(s)))𝑑s,t[a,b].y(t)\leq g(t,y(t),y(h(t)))+\int\nolimits_{a}^{t}f(s,y(h(s)))ds+\int\nolimits_{a}^{b}K(s,y(h(s)))ds,\ t\in[a,b].

Then y(t)x(t) with t[a1,a] implies that yxy(t)\leq x(t)\text{ with }t\in[a_{1},a]\text{\ implies that }y\leq x on [a,b][a,b].

Proof.

We have that

x=Bφ(x) and yBφ(y).x=B_{\varphi}(x)\text{ and }y\leq B_{\varphi}(y).

From the conditions (C1),(C1),(C2),(C3),(C4)(C_{1}),(C_{1}^{\prime}),\ (C_{2}),(C_{3}),(C_{4}) and (C5)(C5) we have that the operator BφB_{\varphi} is WPO. From (b) and (c) we have that BφB_{\varphi} is an increasing operator. Applying Lemma 2.6 we obtain that BφB_{\varphi}^{\infty} is increasing. If φC([a1,a],[a,b]),\varphi\in C([a_{1},a],[a,b]), then we denote by φ~(t)\widetilde{\varphi}(t) the following function

φ~:[a,b],φ~(t)=φ(t),t[a,b].\widetilde{\varphi}:[a,b]\rightarrow\mathbb{R},\widetilde{\varphi}(t)=\varphi(t),\ \forall t\in[a,b].

From Theorem 4.1 we have that Bφ(Y)YB_{\varphi}(Y)\subset Y. Bφ|YB_{\varphi}|_{Y} is a contraction and since φ~Y\widetilde{\varphi}\in Y then

Bφ(φ~)=Bφ(φ),yY.B_{\varphi}^{\infty}(\widetilde{\varphi})=B_{\varphi}^{\infty}(\varphi),\ \forall y\in Y.

Let yBφ(y)y\leq B_{\varphi}(y), since BφB_{\varphi} is increasing, from Gronwall lemma (Lemma 2.7) we get yBφ(y).y\leq B_{\varphi}^{\infty}(y). Also, y,y~(a)Xy(a)y,\widetilde{y}(a)\in X_{y(a)}, so Bφ(y)=Bφ(y~(a)).B_{\varphi}^{\infty}(y)=B_{\varphi}^{\infty}(\widetilde{y}(a)). But y(a)x(a)y(a)\leq x(a), BφB_{\varphi}^{\infty} is increasing and Bφ(x~(a))=Bφ(x)=x.B_{\varphi}^{\infty}(\widetilde{x}(a))=B_{\varphi}^{\infty}(x)=x. So,

yBφ(y)=Bφ(y~(a))Bφ(x~(a))=x.y\leq B_{\varphi}^{\infty}(y)=B_{\varphi}^{\infty}(\widetilde{y}(a))\leq B_{\varphi}^{\infty}(\widetilde{x}(a))=x.

So the proof is completed. ∎

In the following part of this section we study the order preserving property of the problem (1.1)–(4.1) with respect to K.K. For this we use Lemma 2.8.

Theorem 4.3.

(Comparison theorem) We suppose that fi,KiC([a,b]×,),i=1,2,3,giC([a,b]××,),i=1,2,3f_{i},K_{i}\in C([a,b]\times\mathbb{R},\mathbb{R}),i=1,2,3,g_{i}\in C([a,b]\times\mathbb{R}\times\mathbb{R},\mathbb{R}),i=1,2,3 satisfy the conditions (C1),(C1),(C2),(C3),(C4)(C_{1}),(C_{1}^{\prime}),(C_{2}),(C_{3}),(C_{4}) and (C5)(C_{5}). Furthermore, we suppose that:

  • (i)

    f1f2f3f_{1}\leq f_{2}\leq f_{3}, g1g2g3,K1K2K3;g_{1}\leq g_{2}\leq g_{3},K_{1}\leq K_{2}\leq K_{3};

  • (ii)

    f2(s,),g2(t,,),K2(s,)f_{2}(s,\cdot),\ g_{2}(t,\cdot,\cdot),\ K_{2}(s,\cdot) are increasing;

  • (iii)

    S(g,K)1=S(g,K)2=S(g,K)3.S_{(g,K)_{1}}=S_{(g,K)_{2}}=S_{(g,K)_{3}}.

    Let xiC([a1,b],)x_{i}\in C([a_{1},b],\mathbb{R)} be a solution of the equation

    xi(t)\displaystyle x_{i}(t) =gi(t,xi(t),xi(h(t)))+atfi(s,xi(h(s)))𝑑s\displaystyle=g_{i}(t,x_{i}(t),x_{i}(h(t)))+\int\nolimits_{a}^{t}f_{i}(s,x_{i}(h(s)))ds
    +abKi(s,xi(h(s)))𝑑s,t[a,b] and i=1,2,3.\displaystyle\quad+\int\nolimits_{a}^{b}K_{i}(s,x_{i}(h(s)))ds,\ t\in[a,b]\text{ and }i=1,2,3.

    If x1(t)x2(t)x3(t)x_{1}(t)\leq x_{2}(t)\leq x_{3}(t)\ with t[a1,a],t\in[a_{1},a], then x1x2x3x_{1}\leq x_{2}\leq x_{3}\ \ on [a,b][a,b].

Proof.

Applying Theorem 4.1 we have that the operators Bφi,i=1,2,3,B_{\varphi_{i}},i=1,2,3,\ are WPOs. From the condition (ii) of the theorem, follows that the operator Bφ2B_{\varphi_{2}} is monotone increasing. Recalling the condition (i) we have that Bφ1Bφ2Bφ3B_{\varphi_{1}}\leq B_{\varphi_{2}}\leq B_{\varphi_{3}}.

Let now x~i(a)C([a1,b],)\widetilde{x}_{i}(a)\in C([a_{1},b],\mathbb{R)} be defined by x~i(a)(t)=xi(a),t[a1,b]\widetilde{x}_{i}(a)(t)=x_{i}(a),\ \forall t\in[a_{1},b]. It is clear that the following inequalities between the defined functions hold:

x~1(a)(t)x~2(a)(t)x~3(a)(t),t[a1,b].\widetilde{x}_{1}(a)(t)\leq\widetilde{x}_{2}(a)(t)\leq\widetilde{x}_{3}(a)(t),\ \forall t\in[a_{1},b].

Next, we apply Lemma 2.8 to the above inequalities and we have that

Bφ1(x~1(a))Bφ2(x~2(a))Bφ3(x~3(a)).B_{\varphi_{1}}^{\infty}(\widetilde{x}_{1}(a))\leq B_{\varphi_{2}}^{\infty}(\widetilde{x}_{2}(a))\leq B_{\varphi_{3}}^{\infty}(\widetilde{x}_{3}(a)).

But also xix_{i} is equal to Bφi(x~i(a)),i=1,2,3B_{\varphi i}^{\infty}(\widetilde{x}_{i}(a)),i=1,2,3 and therefore, from Lemma 2.8, we get that x1x2x3.x_{1}\leq x_{2}\leq x_{3}. The proof is completed. ∎

In the last part of this section we consider the Cauchy problem (1.1)–(4.1) and we suppose that the conditions of the Theorem 4.1 are satisfied. We denote by x(;g,f,K),x^{\ast}(\cdot;g,f,K),\ the solution of this problem. The last result is a data dependence result for the solutions of two similar problems with different parameters.

Theorem 4.4.

(Data dependence theorem) We suppose that φi,gi,fi,Ki\varphi_{i},g_{i},f_{i},K_{i},i=1,2i=1,2 satisfy the conditions (C1),(C1),(C2),(C3),(C4)(C_{1}),(C_{1}^{\prime}),(C_{2}),(C_{3}),(C_{4}) and (C5)(C_{5}). Furthermore, we suppose that there exists ηi>0,i=1,2,3\eta_{i}>0,i=1,2,3 such that

  1. (i)

    |g1(t,u1,u2)g2(t,u1,u2)|η1,t[a,b],ui,i=1,2;\left|g_{1}(t,u_{1},u_{2})-g_{2}(t,u_{1},u_{2})\right|\leq\eta_{1},\forall t\in[a,b],u_{i}\in\mathbb{R},i=1,2;

  2. (ii)

    |f1(t,u)f2(t,u)|η2,t[a,b],u;\left|f_{1}(t,u)-f_{2}(t,u)\right|\leq\eta_{2},\forall t\in[a,b],u\in\mathbb{R};

  3. (iii)

    |K1(t,v)K2(t,v)|η3,t[a,b],v;\left|K_{1}(t,v)-K_{2}(t,v)\right|\leq\eta_{3},\forall t\in[a,b],v\in\mathbb{R};

  4. (iv)

    S(g,K)1=S(g,K)2.S_{(g,K)_{1}}=S_{(g,K)_{2}}.

Then

HC(S(g,K)1,S(g,K)2)[1Lτ]1[η1+(ba)(η2+η3)],H_{\left\|\cdot\right\|_{C}}(S_{(g,K)_{1}},S_{(g,K)_{2}})\leq\left[1-L_{\tau}\right]^{-1}\left[\eta_{1}+(b-a)(\eta_{2}+\eta_{3})\right],

where Lτ:=max{(2lg1+(ba)(lf1+lK1)),(2lg2+(ba)(lf2+lK2))}L_{\tau}:=\max\{(2l_{g_{1}}+(b-a)\left(l_{f_{1}}+l_{K_{1}}\right)),(2l_{g_{2}}+(b-a)\left(l_{f_{2}}+l_{K_{2}}\right))\}, for τ\tau suitable selected and HCH_{\left\|\cdot\right\|_{C}} denotes the Pompeiu-Housdorff functional with respect to τ.\left\|\cdot\right\|_{\tau}.

Proof.

For the proof of this result let us consider the two operators

Bgi,fi,Ki\displaystyle B_{g_{i},f_{i},K_{i}} =gi(t,xi(t),xi(h(t)))+atfi(s,xi(h(s)))𝑑s\displaystyle=g_{i}(t,x_{i}(t),x_{i}(h(t)))+\int\nolimits_{a}^{t}f_{i}(s,x_{i}(h(s)))ds
+abKi(s,xi(h(s)))𝑑s,t[a,b] andi=1,2.\displaystyle\quad+\int\nolimits_{a}^{b}K_{i}(s,x_{i}(h(s)))ds,\ t\in[a,b]\ \text{ and}\ i=1,2.

From the Theorem 4.1 we have that these operators are cc-POs with c=[1Lτ]1c=\left[1-L_{\tau}\right]^{-1}. On the other hand we have that

Bg1,f1,K1(x)Bg2,f2,K2(x)η1+(ba)(η2+η3),xC[a,b].\left\|B_{g_{1},f_{1},K_{1}}(x)-B_{g_{2},f_{2},K_{2}}(x)\!\right\|\leq\eta_{1}+(b-a)(\eta_{2}+\eta_{3}),\ \forall x\in C[a,b].

The proof follows from Lemma 2.10. ∎

5. Applications

Let us now discuss some applications for the general result.

Example 5.1.

We consider the following integral equation

(5.1) x(t)=φ(0)+0tf(s,x(sw))𝑑s+0bK(s,x(sw))𝑑s,t[0,b],x(t)=\varphi(0)+\!\int\nolimits_{0}^{t}f(s,x(s-w))ds\!+\!\int\nolimits_{0}^{b}K(s,x(s-w))ds,\!\ t\in[0,b],

where w[0,c],b>0,fC([0,b]×,)w\in[0,c],b>0,f\in C([0,b]\times\mathbb{R},\mathbb{R)}, KC([0,b]×,)K\in C([0,b]\times\mathbb{R},\mathbb{R)} and φC([c,0],).\varphi\in C\left([-c,0],\mathbb{R}\right).

In this case (C1)(C8)(C_{1})-(C_{8}) become

  • (C1)

    fC([0,b]×,)f\in C([0,b]\times\mathbb{R},\mathbb{R)}, KC([0,b]×,)K\in C([0,b]\times\mathbb{R},\mathbb{R)}, w[0,c],b>0w\in[0,c],b>0;

  • (C1{}_{1}^{\prime})

    x(t)=φ(t),t[c,0],φC([c,0],);x(t)=\varphi(t),\ t\in[-c,0],\varphi\in C\left([-c,0],\mathbb{R}\right);

  • (C3)

    there exists lf>0l_{f}>0 such that

    |f(t,u)f(t,v)|lf|uv|,t[0,b],u,v;\left|f(t,u)-f(t,v)\right|\leq l_{f}\left|u-v\right|,\ \forall t\in[0,b],u,v\in\mathbb{R};
  • (C4)

    there exists lK>0l_{K}>0 such that

    |K(t,u)K(t,v)|lK|uv|,t[0,b],u,v;\left|K(t,u)-K(t,v)\right|\leq l_{K}\left|u-v\right|,\ \forall t\in[0,b],u,v\in\mathbb{R};
  • (C5)

    φ(0)=0bK(s,x(sw))𝑑s;\varphi(0)=\int\nolimits_{0}^{b}K(s,x(s-w))ds;

  • (C6)

    b(lf+lK)<1.b(l_{f}+l_{K})<1.

The numbers mg,Mg,Mf,Mk>0m_{g},M_{g},M_{f},M_{k}>0 are such that

mg\displaystyle m_{g} φ(0)Mg;\displaystyle\leq\varphi(0)\leq M_{g};
|f(t,u)|\displaystyle\left|f(t,u)\right| Mf,|K(t,v)|Mk,t[0,b],u,v;\displaystyle\leq M_{f},\ \left|K(t,v)\right|\leq M_{k},\forall t\in[0,b],u,v\in\mathbb{R};
  • (C7)

    Mg+b(Mf+MK)b;M_{g}+b(M_{f}+M_{K})\leq b;

  • (C8)

    0Mgb(Mf+MK).0\leq M_{g}-b(M_{f}+M_{K}).

Since all the assumptions are verified we can apply Theorem 4.1.

Example 5.2.

We consider the following integral equation

(5.2) x(t)=g(t,x(t),x(λt))+0tf(s,x(λs))𝑑s+0bK(s,x(λs))𝑑s,t[0,b],x(t)=g(t,x(t),x(\lambda t))+\!\int\nolimits_{0}^{t}f(s,x(\lambda s))ds\!+\!\int\nolimits_{0}^{b}K(s,x(\lambda s))ds,\!\ t\in[0,b],

where 0<λ<1,b>0,gC([0,b]×2;),fC([0,b]×,)0<\lambda<1,b>0,g\in C([0,b]\times\mathbb{R}^{2};\mathbb{R}),f\in C([0,b]\times\mathbb{R},\mathbb{R)}, KC([0,b]×,).K\in C([0,b]\times\mathbb{R},\mathbb{R)}.

In this case (C1)(C8)(C_{1})-(C_{8}) become

  • (C1)

    gC([0,b]×2;),fC([0,b]×,)g\in C([0,b]\times\mathbb{R}^{2};\mathbb{R}),\ f\in C([0,b]\times\mathbb{R},\mathbb{R)}, KC([0,b]×,)K\in C([0,b]\times\mathbb{R},\mathbb{R)}, 0<λ<1,b>00<\lambda<1,b>0;

  • (C1{}_{1}^{\prime})

    x(t)=φ(t),t[c,0],x(t)=\varphi(t),t\in[-c,0], φC([c,0],);\varphi\in C\left([-c,0],\mathbb{R}\right);

  • (C2)

    there exists lg>0l_{g}>0 such that

    |g(t,u1,u2)g(t,v1,v2)|lg(|u1v1|+|u2v2|),\left|g(t,u_{1},u_{2})-g(t,v_{1},v_{2})\right|\leq l_{g}\left(\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|\right),

    t[0,b],ui,vi,i=1,2\forall t\in[0,b],u_{i},v_{i}\in\mathbb{R},i=1,2.

  • (C3)

    there exists lf>0l_{f}>0 such that

    |f(t,u)f(t,v)|lf|uv|,t[0,b],u,v;\left|f(t,u)-f(t,v)\right|\leq l_{f}\left|u-v\right|,\forall t\in[0,b],u,v\in\mathbb{R};
  • (C4)

    there exists lK>0l_{K}>0 such that

    |K(t,u)K(t,v)|lK|uv|,t[0,b],u,v;\left|K(t,u)-K(t,v)\right|\leq l_{K}\left|u-v\right|,\forall t\in[0,b],u,v\in\mathbb{R};
  • (C5)

    φ(0)=g(0,x(0),x(λt))+abK(s,x(λs))𝑑s;\varphi(0)=g(0,x(0),x(\lambda t))+\int\nolimits_{a}^{b}K(s,x(\lambda s))ds;

  • (C6)

    2lg+b(lf+lK)<1.2l_{g}+b(l_{f}+l_{K})<1.

The numbers mg,Mg,Mf,Mk>0m_{g},M_{g},M_{f},M_{k}>0 are such that

mg\displaystyle m_{g} g(t,u,v)Mg;\displaystyle\leq g(t,u,v)\leq M_{g};
|f(t,u)|\displaystyle\left|f(t,u)\right| Mf,|K(t,v)|Mk,t[0,b],u,v;\displaystyle\leq M_{f},\ \left|K(t,v)\right|\leq M_{k},\forall t\in[0,b],u,v\in\mathbb{R};
  • (C7)

    Mg+(Mf+MK)bb;M_{g}+(M_{f}+M_{K})b\leq b;

  • (C8)

    0Mg(Mf+MK)b.0\leq M_{g}-(M_{f}+M_{K})b.

Since all the assumptions are verified we can apply Theorem 4.1.

Acknowledgement 5.3.

The work of the first author was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

References

  • [1] N.V. Azbelev (ed), Functional-differential equations (Russian), Perm. Politekh. Inst., Perm, 1985.
  • [2] C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
  • [3] C. Corduneanu, Abstract Volterra equations (a survey), Math. and Comp. Modelling, 32 (2000), 1503-1528.
  • [4] M. Dobriţoiu, I.A. Rus and M.A. Şerban, An Integral Equation Arising from Infectious Diseases, via Picard Operators, Stud. Univ. Babeş-Bolyai Math., LII, 3 (2007), 81–94.
  • [5] M. Dobriţoiu, Properties of the solution of an integral equation with modified argument, Carpathian J. Math., 23 (2007), Nos. 1-2, 77-80.
  • [6] D. Guo, V. Lakshmikantham, X. Liu, Nonlinear Integral Equations in Abstract Spaces, Kluwer Academic Publishers, 1996.
  • [7] V. Kolmanovskii, A. Myshkis, Applied theory of functional differential equations, Kluwer Academic Publisers, 1992.
  • [8] I.M. Olaru, An integral equation via weakly Picard operators, Fixed Point Theory, 11 (2010), No. 1, 97-106.
  • [9] I.M. Olaru, Data dependence for some integral equations, Studia Univ. “Babeş-Bolyai” Mathematica, LV (2010), No. 2, 159-165.
  • [10] D. Otrocol, Abstract Volterra operators, Carpathian J. Math., 24 (2008) No. 3, 370-377.
  • [11] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), No. 1, 191-219.
  • [12] I.A. Rus, Generalized contractions and applications, Cluj University Press, 2001.
  • [13] S. Reich, A.J. Zaslavski, Almost all nonexpansive mappings are contractive, C. R. Math. Rep. Acad. Sci. Canada, 22 (2000), 118–124
  • [14] S. Reich, A.J. Zaslavski, The set of noncontractive mappings is sigma-porous in the space of all nonexpansive mappings, C. R. Acad. Sci. Paris Ser. I Math., 333 (2001), 539–544.
  • [15] M.A. Şerban, Data dependence for some functional-integral equations, Journal of Applied Mathematics, 1 (2008), No. 1, 219-234.
  • [16] M.A. Şerban, I.A. Rus, A. Petruşel, A class of abstract Volterra equations, via weakly Picard operators technique, Mathematical Inequalities & Applications, 13(2010), 255-269.
2017

Related Posts