## Abstract

In this paper we consider a functional integral equation of the form

\[

x(t)=g(t,x(t),x(h(t)))+\int_{a}^{t} f(s,x(h(s)))ds+\int_{a}^{b} K(s,x(h(s)))ds, \ \ t \in [a,b].

\]

Using the weakly Picard operator technique we establish existence, data dependence and comparison results for the solutions of the above equation.

## Authors

V.A. **Ilea**

(Babes Bolyai Univ.)

D. **Otrocol**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy,

Technical University of Cluj-Napoca)

## Keywords

Functional-integral equation; weakly Picard operators; data dependence

## Cite this paper as:

V.A. Ilea, D. Otrocol, *An application of the Picard operator technique to functional integral equations*, J. Nonlinear Convex Anal., Vol. 18 (2017) no. 3, pp. 405-413

## About this paper

##### Journal

Journal of Nonlinear and Convex Analysis

##### Publisher Name

Yokohama, Japan

##### DOI

##### Print ISSN

1345-4773

##### Online ISSN

1880-5221

##### MR

MR3649198

##### ZBL

## Google Scholar

???