Publications

papers:

  1. C. Vamoş, N. Suciu, A. Georgescu, Hydrodynamic equations for one-dimensional systems of inelastic particles, Physical Review E, Vol. 55, 6277-6280 (1997). (IF 2.4) (pdf)
  2. N. Suciu, C. Vamoş, Simulation numérique du transport dans les milieux poreux stratifiés par une methode d’automate cellulaire, J.P. Carbonnel, P. Serban editeurs, Communications presentées au Seminaire ARDI-INMH, Bucarest, vol. 1 (1997), 172-177.
  3. C. Vamoş, N. Suciu, M. Peculea, Numerical modelling of the one-dimensional diffusion by random walkers, Rev. Anal. Numér. Théor. Approx., 26 (1997) no. 1-2, 237-247.
  4. C. Vamos, N. Suciu, A. Georgescu, Hydrodynamic Equations for One-Dimensional Systems of Inelastic Particles, Proc. of the 4-th. Conf. on Appl. and Industrial Math.,
    ROMAI, Bucharest, 163-171, 1997.
  5. G. Bozis, M.-C. Anisiu, Cristina Blaga, Inhomogeneous potentials producing homogeneous orbits, Astron. Nachr. 318 (5) (1997), 313-318
  6. I. Păvăloiu, On an approximation formula, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 179-184.
  7. I. Păvăloiu, On the convergence order of the multistep methods, Bul. Ştiinţ. Univ. Baia Mare, Ser. Mat.-Inf. 13 (1997), pp. 59-64.
  8. D. Luca, I. Păvăloiu, On the Heron’s method for approximating the cubic root of a real number, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 103-108.
  9. E. Cătinaş, I. Păvăloiu, On approximating the eigenvalues and eigenvectors of linear continuous operators, Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 19-27.
  10. I. Păvăloiu, Optimal efficiency indexes for iterative methods of interpolatory type, Computer Science Journal of Moldova, 5 (1997) no. 1(13), pp. 20-43.
  11. E. Cătinaş, I. Păvăloiu, On a Chebyshev-type method for approximating the solutions of polynomial operator equations of degree 2, Approximation and Optimization, Proceedings of the International Congress on Approximation and Optimization (Romania)-ICAOR, Cluj-Napoca, July 29-August 1, 1996, vol. I, pp. 219-226, D.D. Stancu, Gh. Coman, W.W. Breckner and P. Blaga (eds.), Transilvania Press, 1997, ISBN 973-98180-7-2.
  12. C. Mustăţa, Approximation by spline functions of the solutions of a linear bilocal problem, Rev. Anal. Numér. Théor. Approx. 26 (1997) 1-2. 137-148.
  13. M.-C. Anisiu, V. Anisiu, On the closedness of sets with the fixed point property for contractions, Rev. Anal. Numér. Théor. Approx. 26 (1-2) (1997), 13-17 (pdf file here)
  14. C.I. Gheorghiu, Al. Tămăşan, On the bifurcation of the null solutions of some boundary value problems, An. St. Univ. Ovidius Constanta, Seria Matematica, 5 (1997), 59-64.
  15. E. Chifu, E. Gavrila, M. Sălăjan, C.I. Gheorghiu, Surface mobility of surfactant solutions, XVII. Determination of Marangoni rate of flow in simulated zero gravity conditions, J. Roum. Colloid Surface Chem. Assoc., (1997), pp. 25-29.
  16. A. C. Mureṣan, A method for obtaining iterative formulas of higher order for roots of equations, Rev. Anal. Numer. Theor. Approx., 26 (1997) 1-2, 131-135.
  17. I. Danciu, Local numerical stability of the collocation methods for Volterra integral equations. Bul. Ştiinţ. Univ. Baia Mare Ser. B, 13 (1997) no. 1-2, 57–65.
  18. I. Danciu, Numerical stability of collocation methods for Volterra integro-differential equations. Rev. Anal. Numér. Théor. Approx., 26 (1997) nos. 1-2, pp. 59–74.
  19. ?A. Revnic, An implicit spline interpolatory numerical method for systems of ODEs, Studia Univ. Babes-Bolyai, 1997.
  20. ?A. Revnic, An A-stable spline numerical method for systems of ODEs, Quaderni Maternatici, II serie Preprint, Universita di Trieste, No.405, 1997.
  21. …(to be completed)

Attended conferences

  • A. Revnic, A class of spline numerical methods for solving ordinary differential equations, 3rd International Conference Scientific Computation and Differential Equations, SciCADE97, Grado, Italia, 15-19 sept. 1997.

(to be completed)

Other (grants/contracts, editorial duties, etc).

  • M.C. Anisiu, Complexitatea cuvintelor si sisteme, grant GAR 356/1997 (20 mil. lei)

(to be completed)

Peer review

Mathematical Reviews:

ZBL:

(to be completed)