Posts by Octavian Agratini

Abstract

The paper gartes some results concerning linear approximation operators  and it raises three open problems.

Authors

Octavian Agratini
Department of Mathematics, Babes-Bolyai University, Cluj-Napoca, Romania

Keywords

linear positive operator; Korovkin type theorem; convex function of n-order; divided difference

Paper coordinates

O. Agratini, Approximation operators – solutions and questions, Seminaire de la Theorie de La Meilleure Approximation, Convexite et optimisation, 2002, pp.21-29.

PDF

About this paper

Journal
Publisher Name
DOI
Print ISSN
Online ISSN

google scholar link

[1] M. Abramowitz, I.A. Stegun, eds., Handbook of Mathematical Funcitons with Fromulas, Graphs and Mathematical Tables,  National Bureau of Standards Applied Mathematics Series, 55, 1964.
[2] F. Altomare, M. Campiti,  Korovkin-type Approximation Theory and its Applications,  de Gruyter Series in Mathematics, vol. 17, Walter de Gruyter ^ Co., Berlin, New York, 1994.
[3] M. Campiti, G. Metafune, Approximation Properties of Recursively Defined Bernstein-Type Operators,  J. Approx. Theory, 87 (1996), 243-269.
[4] M.K. Khan, On the Rate of Convergence of Bernstein Power Series for Funcitons of Bounded Variation,  J. Approx. Theory, 57 (1989), 90-103.
[5] H.G. Lehnhoff, On a modified Szasz-Mirakjan operator,  J. Approx. Theory, 42 (1984), 278-282.
[6] J. Wang, S. Zhou,  On the convergence of modified Baskakov operators,  Bull. Inst. Math. Academia Sinica, 28 (2000), 2, 117-123.

Related Posts

On some wavelet type linear operators

Abstract In this paper is introduced a general a class \(\left( L_{k}\right)_{k\in\mathbb{Z}}\) of linear positive operators of wavelet type. The…

The mysterious wavelets world

Abstract This survey paper contains the basic ideas of windowed Fourier transform, wavelet transform, wavelet bases and multiresolution analysis, providing…