[1] B. Abbas, H. Attouch, B.F. Svaiter, Newton-like dynamics and forward-backward methods for structured monotone inclusions in Hilbert spaces, Journal of Optimization Theory and its Applications, 161(2) (2014), 331-360748
[2] C.D. Alecsa, The long time behavior and the rate of convergence of symplectic convex algorithms obtained via splitting discretizations of inertial damping systems, (2020), arxiv.org/abs/2001.10831750
[3] C.D. Alecsa, S.C. Laszlo, T. Pinta, An Extension of the Second Order Dynamical System that Models Nesterov’s Convex Gradient Method, Applied Mathematics and Optimization, (2020), https://doi.org/10.1007/s00245-020-09692-1752
[4] C.D. Alecsa, S.C. Laszlo, A. Viorel, A gradient type algorithm with backward inertial steps associated to a nonconvex minimization problem, Numerical Algorithms, 84(2) (2020), 485-512754
[5] V. Apidopoulos, J.F. Aujol, Ch. Dossal, Convergence rate of inertial Forward-Backward algorithm beyond Nesterov’s rule, Mathematical Programming, 180 (2020), 137-156756
[6] H. Attouch, A. Balhag, Z. Chbani, H. Riahi, Fast convex optimization via inertial dynamics combining vis-757 cous and Hessian-driven damping with time rescaling, Evolution Equations and Control Theory, (2021), https://doi.org/10.3934/eect.202101759
[7] H. Attouch, A. Cabot, Convergence rates of inertial forward-backward algorithms, SIAM J. Optim., 28(1) (2018), 849-874
[8] H. Attouch, Z. Chbani, J. Fadili, H. Riahi, First-order algorithms via inertial systems with Hessian driven damping, Math. Program., (2020), https://doi.org/10.1007/s10107-020-01591-1762
[9] H. Attouch, Z. Chbani, J. Peypouquet, P. Redont, Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity, Math. Program. Ser. B, 168 (2018), 123-175764
[10] H. Attouch, Z. Chbani, H. Riahi, Combining fast inertial dynamics for convex optimization with Tikhonov regularization, Journal of Mathematical Analysis and Applications, 457(2) (2018), 1065-1094766
[11] H. Attouch, Z. Chbani, R. Riahi, Rate of convergence of the Nesterov accelerated gradient method in the subcritical case α≤3. ESAIM-COCV, 25 (2019), Article number 2768
[12] H. Attouch, M.-O. Czarnecki, Asymptotic Control and Stabilization of Nonlinear Oscillators with Non-isolated Equilibria, J. Differential Equations, 179 (2002), 278-310770
[13] H. Attouch, R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method, J. Differential Equations, 128 (1996), 519-540772
[14] H. Attouch, S.C. Laszlo, Newton-like Inertial Dynamics and Proximal Algorithms Governed by Maximally Monotone Operators, SIAM Journal on Optimization, 30(4) (2020), 3252–3283774
[15] H. Attouch, S.C. Laszlo, Continuous Newton-like Inertial Dynamics for Monotone Inclusions, Set-Valued and Variational Analysis, (2020), doi:10.1007/s11228-020-00564-y776
[16] H. Attouch, S.C. Laszlo, Convex optimization via inertial algorithms with vanishing Tikhonov regularization: fast convergence to the minimum norm solution, (2021), https://arxiv.org/abs/2104.11987778
[17] H. Attouch, J. Peypouquet, The rate of convergence of Nesterov’s accelerated forward-backward method is actually faster than 1/k2. SIAM J. Optim., 26(3) (2016), 1824-1834780
[18] H. Attouch, J. Peypouquet, Convergence of inertial dynamics and proximal algorithms governed by maximal monotone operators, Mathematical Programming, 174(1-2) (2019), 391–432782
[19] H. Attouch, J. Peypouquet, P. Redont, Fast convex optimization via inertial dynamics with Hessian driven damping, Journal of Differential Equations, 261(10) (2016), 5734-5783784
[20] R.I. Bot¸, E.R. Csetnek, S.C. Laszlo, Tikhonov regularization of a second order dynamical system with Hessian damping, Math. Program., (2020), https://doi.org/10.1007/s10107-020-01528-8786
[21] R.I. Bot¸, E.R. Csetnek, S.C. Laszlo, A second-order dynamical approach with variable damping to nonconvex smooth minimization Applicable Analysis, 99(3) (2020), 361-378788
[22] R.I. Bot¸, S.M. Grad, D. Meier, M. Staudigl, Inducing strong convergence of trajectories in dynamical systems associated to monotone inclusions with composite structure, Adv. Nonlinear Anal., 10 (2021), 450–476790
[23] A. Cabot, H. Engler, S. Gadat, On the long time behavior of second order differential equations with asymptotically small dissipation, Transactions of the American Mathematical Society, 361 (2009), 5983-6017792
[24] A. Chambolle, Ch. Dossal, On the convergence of the iterates of the Fast Iterative Shrinkage Thresholding Algorithm, Journal of Optimization Theory and Applications, 166 (2015), 968-982794
[25] R. Cominetti, J. Peypouquet, S. Sorin, Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization, J. Differential Equations, 245 (2008), 3753-3763796
[26] M.A. Jendoubi, R. May, Asymptotics for a second-order differential equation with nonautonomous damping and an integrable source term, Appl. Anal., 94(2) (2015), 435–443798
[27] S.C. Laszlo, Convergence rates for an inertial algorithm of gradient type associated to a smooth nonconvex minimization, Mathematical Programming, (2020), https://doi.org/doi.org/10.1007/s10107-020-01534-w800
[28] S.C. Laszlo, Forward-backward algorithms with different inertial terms for structured non-convex minimization problems, (2020), arxiv.org/abs/2002.07154802
[29] T. Lin, M.I. Jordan, A Control-Theoretic Perspective on Optimal High-Order Optimization, (2019), arXiv:1912.07168v1803
[30] R. May, Asymptotic for a second-order evolution equation with convex potential and vanishing damping term, Turkish Journal of Math., 41(3) (2017), 681-685805
[31] Y. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2), Soviet Mathematics Doklady, 27 (1983), 372-376807
[32] B. Shi, S.S. Du, M.I. Jordan, W.J. Su, Understanding the acceleration phenomenon via high-resolution differential equations, (2018), arXiv:1810.08907v3809
[33] W. Su, S. Boyd, E.J. Candes, A differential equation for modeling Nesterov’s accelerated gradient method: theory and insights, Journal of Machine Learning Research 17(153) (2016), 1-43