Posts by Costica Mustata

Abstract

Authors

Costică Mustăţa
Tiberiu Popoviciu Institute of Numerical Analysis

Keywords

Paper coordinates

C. Mustăţa, A characterization of semichebyshevian sets in a metric space, Anal. Numér. Théor. Approx. 7 (1978) 2, 169-170.

PDF

About this paper

Journal

Mathematica-Revue d’Analyse Numer. Theor.Approx.

Publisher Name

Romanian Academy

Print ISSN
Online ISSN

MR # 82j: 41034

google scholar link

[1] Mustăţa, Costică, On the best approximation in metric spaces. Rev. Anal. Numér. Théor. Approx. 4 (1975), no. 1, 45–50, MR0531660.

[2] Singer, Ivan, Cea mai bună aproximare în spaţii vectoriale normate prin elemente din subspaţii vectoriale. (Romanian) [Best approximation in normed vector spaces by elements of vector subspaces] Editura Academiei Republicii Socialiste România, Bucharest 1967 386 pp., MR0235368.

Paper (preprint) in HTML form

1978-Mustata-A characterization of semichebyshevian sets in a metric space-Jnaat

A CHARACTERIZATION OF SEMI-CHEBYSHEVIAN SETS IN A METRIC SPACE

byCOSTICA MUSTĂTA(Cluj-Napoca)

In [1] is given the theorems of characterization of Chebyshevian sets in a metric space. The present note is a completation of the paper [1].
Let X X XXX be a metric space with the metric d d ddd, let Y Y YYY be a nonvoid subset of X X XXX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y, where x 0 x 0 x_(0)x_{0}x0 is an fixed element in X X XXX. Let Lip 0 X 0 X _(0)X{ }_{0} X0X be the space of all real Lipschitz functions, defined on X X XXX, endowed with the Lipschitz norm X X ||||_(X):}\left\|\|_{X}\right.X [1].
The set Y Y YYY is called semi-Chebyshevian if for every x X Y x X Y x⋐X\\Yx \Subset X \backslash YxXY there exists at most an element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y such that
(1) d ( x , y 0 ) = inf { d ( x , y ) : y Y } = d ( x , Y ) . (1) d x , y 0 = inf { d ( x , y ) : y Y } = d ( x , Y ) . {:(1)d(x,y_(0))=i n f{d(x","y):y in Y}=d(x","Y).:}\begin{equation*} d\left(x, y_{0}\right)=\inf \{d(x, y): y \in Y\}=d(x, Y) . \tag{1} \end{equation*}(1)d(x,y0)=inf{d(x,y):yY}=d(x,Y).
An element y 0 Y y 0 Y y_(0)in Yy_{0} \in Yy0Y for that (1) holds is called an element of best approximation of x x xxx, by elements of Y Y YYY.
THEOREM. If Y Y YYY is a nonvoid subset of the metric space X X XXX such that x 0 Y x 0 Y x_(0)in Yx_{0} \in Yx0Y, then the following two asertions are equivalent:
1 Y 1 Y 1^(@)Y1^{\circ} Y1Y is semi-Chebyshevian;
2 2 2^(@)2^{\circ}2 There does not exist f Lip 0 X , x 1 X f Lip 0 X , x 1 X f inLip_(0)X,x_(1)in Xf \in \operatorname{Lip}_{0} X, x_{1} \in XfLip0X,x1X and y 1 , y 2 Y , y 1 y 2 y 1 , y 2 Y , y 1 y 2 y_(1),y_(2)in Y,y_(1)!=y_(2)y_{1}, y_{2} \in Y, y_{1} \neq y_{2}y1,y2Y,y1y2 such that
a) f X = 1 f X = 1 ||f||_(X)=1\|f\|_{X}=1fX=1,
b) f | Y = 0 f Y = 0 f|_(Y)=0\left.f\right|_{Y}=0f|Y=0,
c) f ( x 1 ) = d ( x 1 , y 1 ) = d ( x 1 , y 2 ) f x 1 = d x 1 , y 1 = d x 1 , y 2 f(x_(1))=d(x_(1),y_(1))=d(x_(1),y_(2))f\left(x_{1}\right)=d\left(x_{1}, y_{1}\right)=d\left(x_{1}, y_{2}\right)f(x1)=d(x1,y1)=d(x1,y2).
Proof. Let us suppose that there exists f Lip 0 X f Lip 0 X f in Lip_(0)Xf \in \operatorname{Lip}{ }_{0} XfLip0X, there exist x 1 X x 1 X x_(1)in Xx_{1} \in Xx1X and y 1 , y 2 Y , y 1 y 2 y 1 , y 2 Y , y 1 y 2 y_(1),y_(2)in Y,y_(1)!=y_(2)y_{1}, y_{2} \in Y, y_{1} \neq y_{2}y1,y2Y,y1y2 such that the conditions a ) , b ) , c ) a , b , c {:a),b),c)\left.\left.\left.a\right), b\right), c\right)a),b),c) hold. Then
f ( x 1 ) = d ( x 1 , y 1 ) = f ( x 1 ) f ( y 1 ) = | f ( x 1 ) f ( y 1 ) | , f ( x 1 ) = d ( x 1 , y 2 ) = f ( x 1 ) f ( y 2 ) = | f ( x 1 ) f ( y 2 ) | , f x 1 = d x 1 , y 1 = f x 1 f y 1 = f x 1 f y 1 , f x 1 = d x 1 , y 2 = f x 1 f y 2 = f x 1 f y 2 , {:[f(x_(1))=d(x_(1),y_(1))=f(x_(1))-f(y_(1))=|f(x_(1))-f(y_(1))|","],[f(x_(1))=d(x_(1),y_(2))=f(x_(1))-f(y_(2))=|f(x_(1))-f(y_(2))|","]:}\begin{aligned} & f\left(x_{1}\right)=d\left(x_{1}, y_{1}\right)=f\left(x_{1}\right)-f\left(y_{1}\right)=\left|f\left(x_{1}\right)-f\left(y_{1}\right)\right|, \\ & f\left(x_{1}\right)=d\left(x_{1}, y_{2}\right)=f\left(x_{1}\right)-f\left(y_{2}\right)=\left|f\left(x_{1}\right)-f\left(y_{2}\right)\right|, \end{aligned}f(x1)=d(x1,y1)=f(x1)f(y1)=|f(x1)f(y1)|,f(x1)=d(x1,y2)=f(x1)f(y2)=|f(x1)f(y2)|,
and by Theorem 4 in [1] it follows that the elements y 1 , y 2 y 1 , y 2 y_(1),y_(2)y_{1}, y_{2}y1,y2 are two distinct elements of the best approximation for x 1 x 1 x_(1)x_{1}x1. Consequently, Y Y YYY is not semi-Chebyshevian.
If Y Y YYY is not semi-Chebyshevian, then there exists an element x 1 X x 1 X x_(1)in Xx_{1} \in Xx1X and the elements y 1 , y 2 Y , y 1 y 2 y 1 , y 2 Y , y 1 y 2 y_(1),y_(2)in Y,y_(1)!=y_(2)y_{1}, y_{2} \in Y, y_{1} \neq y_{2}y1,y2Y,y1y2 such that
d ( x 1 , y 1 ) = d ( x 1 , y 2 ) = d ( x 1 , Y ) . d x 1 , y 1 = d x 1 , y 2 = d x 1 , Y . d(x_(1),y_(1))=d(x_(1),y_(2))=d(x_(1),Y).d\left(x_{1}, y_{1}\right)=d\left(x_{1}, y_{2}\right)=d\left(x_{1}, Y\right) .d(x1,y1)=d(x1,y2)=d(x1,Y).
Then, the function f ( x ) = d ( x , Y ) , x X f ( x ) = d ( x , Y ) , x X f(x)=d(x,Y),x in Xf(x)=d(x, Y), x \in Xf(x)=d(x,Y),xX is in Lip 0 X 0 X _(0)X{ }_{0} X0X and verifies the condition a ) , b ) , c a ) , b ) , c a),b),ca), b), ca),b),c ). It follows that the asertion 2 2 2^(@)2^{\circ}2 is not fulfilled. The theorem is proved.

REFERENCES

[1] Mustă t t ttt a, C., On the Best Approximation in Metric Spaces, Mathematica - Revue d'Aualyse Numérique et de la Théorie de l'Approximation, L'Analyse Numérique et la Théorie de 1'Approximation, 4, 1, 45-50, (1975)
[2] Singer, I., Cea mai bunà aproximare în spafii vectoriale normate prin elemente din subspatii vectoriale, Anexa II, Ed. Acad. R. S. România, Bucureşti, 1967.
Received, 9. II. 1978.

Universilatea ,Babeṣ-Bolyai''Cluj-NapocaInstitutul de Matematică

Related Posts

On the extension problem with prescribed norm

Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania Keywords? Paper coordinatesC. Mustăţa, On the extension…

On a surjectivity theorem

Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, On a surjectivity theorem, Seminar…

On the extension of Hölder functions

Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, On the extension of Hölder…

On the extension of Lipschitz functions

Abstract AuthorsCostica Mustata “Tiberiu Popoviciu” Institute of Numerical Analysis, Romanian Academy, Romania KeywordsPaper coordinatesC. Mustăţa, On the extension of Lipschitz…