Consistency issues in PDF methods

Abstract

Concentrations of chemical species transported in random environments need to be statistically characterized by probability density functions (PDF). Solutions to evolution equations for the one-point one-time PDF are usually based on systems of computational particles described by Ito equations.

We establish consistency conditions relating the concentration statistics to that of the Ito process and the solution of its associated Fokker-Planck equation to that of the PDF equation. In this frame, we propose a new numerical method which approximates PDFs by particle densities obtained with a global random walk (GRW) algorithm.

The GRW-PDF approach is illustrated for a problem of contaminant transport in groundwater.

Authors

N. Suciu
Tiberiu Popoviciu Institute of Numerical Analysis

L. Schüler

S. Attinger

C. Vamoș
Tiberiu Popoviciu Institute of Numerical Analysis

P. Knabner

Keywords

PDF methods; mixing; random walk; porous media

Cite this paper as:

N. Suciu, L. Schüler, S. Attinger, C. Vamoş, P. Knabner, Consistency issues in PDF methods, Analele Stiint. Univ. Ovidius C.- Mat., , 23 (2015) 3, 187-208,
doi: 10.1515/auom-2015-0055

References

PDF

https://fauam6.am.uni-erlangen.de/~suciu/Suciu-MMELS2014.pdf

Not available yet.

About this paper

Journal

Analele Stiint. Univ. Ovidius C.- Mat.

Publisher Name
Print ISSN

Not available yet.

Online ISSN

1844-0835

Google Scholar Profile

[1] S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11(2) (1985) 119–192.
CrossRef (DOI)

[2] R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, New York, 2003
Online ISBN:9780511610103
CrossRef (DOI)

[3] N. Suciu. Diffusion in random velocity fields with applications to contaminant transport in groundwater, Adv. Water Resour. 69 (2014) 114–133.
CrossRef (DOI)

[4] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.

[5] D.C. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci., 36 (2010) 168-259.
CrossRef (DOI)

[6] A.Y. Klimenko, R.W. Bilger, Conditional moment closure for turbulent combustion, Progr. Energ. Combust. Sci. 25 (1999) 595–687
CrossRef (DOI)

[7] N. Suciu, F.A. Radu, S. Attinger, L. Schuler, Knabner, A Fokker-Planck approach for probability distributions of species concentrations transported in heterogeneous media, J. Comput. Appl. Math. (2014), submitted.
CrossRef (DOI)

[8] D.W. Meyer, P. Jenny, H.A. Tchelepi, A joint velocity-concentration PDF method for tracer flow in heterogeneous porous media, Water Resour. Res., 46 (2010) W12522.
CrossRef (DOI)

[9] R. W. Bilger, The Structure of Diffusion Flames, Combust. Sci. Tech. 13 (1976), 155–170.
CrossRef (DOI)

[10] S. Attinger, M. Dentz, H. Kinzelbach, W. Kinzelbach, Temporal behavior of a solute cloud in a chemically heterogeneous porous medium, J. Fluid Mech. 386 (1999) 77–104.
CrossRef (DOI)

[11] N. Suciu, C. Vamos, J. Vanderborght, H. Hardelauf, H. Vereecken, Numerical investigations on ergodicity of solute transport in heterogeneous aquifers, Water Resour. Res. 42 (2006) W04409.
CrossRef (DOI)

[12] C. Vamos, N. Suciu, H. Vereecken, Generalized random walk algorithm for the numerical modeling of complex diffusion processes, J. Comp. Phys., 186 (2003) 527-544.
CrossRef (DOI)

[13] N. Suciu, F.A. Radu, A. Prechtel, F. Brunner, P. Knabner, A coupled finite element-global random walk approach to advection-dominated transport in porous media with random hydraulic conductivity, J. Comput. Appl. Math. 246 (2013) 27–37.
CrossRef (DOI)

[14] C. Vamoș, M. Crăciun, Separation of components from a scale mixture of Gaussian white noises, Phys. Rev. E 81 (2010) 051125.
CrossRef (DOI)

[15] C. Vamoș, M. Crăciun, Automatic Trend Estimation, Springer, Dortrecht, (2012).
CrossRef (DOI)

2015

Related Posts