In 1986, I. Păvăloiu [6] has considered a Banach space and the fixed point problem \[x=\lambda D\left( x\right) +y, \qquad D:X\rightarrow X \ \textrm{nonlinear},\ \lambda\in {\mathbb R},\ y\in X \ \textrm{given}\]written in the equivalent form \(F(x):=x -\lambda D\left( x\right) -y=0\) and solved by the general quasi-Newton method\[x_{n+1}=x_n-A(x_n) \left[ x_n-\lambda D(x_n) -y\right] ,\qquad n=0,1,\ldots\]Semilocal convergence results were obtained, ensuring linear convergence of these iterates. Further results were obtained for the iterates \[x_{n+1}=x_n-[I+\lambda D^\prime(x_n)] \left[x_n+\lambda D(x_n) -y\right] ,\qquad n=0,1,\ldots\] In this note, we analyze the local convergence of these iterates, and, using the Ostrowski local attraction theorem, we give some sufficient conditions such that the iterates converge locally either linearly or with higher convergence orders. The local convergence results require fewer differentiability assumptions for \(D\).


Emil Cătinaş
(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)


nonlinear equations in Banach spaces; inexact Newton method; quasi-Newton method; Ostrowski local attraction theorem; local convergence; convergence order.



About this paper

Cite this paper as:

E. Cătinaş, On the convergence of some quasi-Newton iterates studied by I. Păvăloiu, J. Numer. Anal. Approx. Theory, 44 (2015) no. 1, pp. 38-41.

Print ISSN


Online ISSN


Google Scholar Profile
Section 1
Section 2
Section 1

[1]   E. Catinas, On  the  superlinear  convergence  of  the  successive  approximations  method, J. Optim. Theory Appl., 113 (2002) no. 3, pp. 473-485. http://dx.doi.org/10.1023/A:1015304720071

[2]   E. Catinas, The  inexact,  inexact  perturbed  and  quasi-Newton  methods  are  equivalent models, Math. Comp., 74 (2005) no. 249, pp. 291-301, http://dx.doi.org/10.1090/S0025-5718-04-01646-1

[3]  E. Catinas, On the convergence orders , manuscript.

[4]   Diaconu, A., Pavaloiu, I., Sur quelque methodes iteratives pour la resolution des  equations operationnel les, Rev. Anal. Numer. Theor. Approx., vol. 1, 45-61 (1972),


[5]  J.M. Ortega,  W.C. Rheinboldt, Iterative  solution  of  nonlinear  equations  in  several Variables , Academic Press, New York, 1970.

[6]  I. Pavaloiu, La convergence de certaines methodes iteratives pour resoudre certaines equations  operationnelles, Seminar on functional analysis and numerical methods, Preprint(1986), pp. 127-132 (in French).

[7] I. Pavaloiu, A unified treatment of the modified Newton and chord methods, Carpathian J. Math. 25 (2009) no. 2, pp. 192-196.


Related Posts