Fixed point results for non-self operators R₊^{m}-metric spaces

Abstract

The purpose of this paper is to discuss some problems of the fixed point theory for non-self operators on \({\mathbb R}^m_+\)-metric spaces. The results complement and extend some known results given in the paper: A. Chis-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), No. 1, 73–87.

Authors

Diana Otrocol
Technical University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Romania
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, Cluj-Napoca, Romania

Veronica Ilea
Babes–Bolyai University, Department of Mathematics, Cluj-Napoca, Romania

Adela Novac
Technical University of Cluj-Napoca, Department of Mathematics, Cluj-Napoca, Romania

Keywords

\({\mathbb R}^m_+\)–metric spaces; fixed point; Picard operator; non-self operator; data dependence of the fixed point.

Paper coordinates

D. Otrocol, V. Ilea, A. Novac, Fixed point results for non-self operators R₊m-metric spaces, Fixed Point Theory, 26 (2025) no. 1, 177-188,
https://doi.org/10.24193/fpt-ro.2025.1.10

PDF

freely available at the publisher

About this paper

Journal

Fixed Point Theory

Publisher Name

House of the Book of Science Cluj-Napoca, Romania

Print ISSN

1583-5022

Online ISSN

2066-9208

google scholar link

[1] V. Berinde, S. Maruster, I.A. Rus, Saturated contraction principles for non-self operators, generalizations and applications, Filomat, 31(11)(2017), 3391-3406.
[2] V. Berinde, A. Petru¸sel, I.A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric space, Fixed Point Theory, 24(2023), no. 2, 525–540.
[3] A. Chis-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), no. 1, 73–87.
[4] M. Frigon, Fixed point and continuation results for contractions and Gauge spaces, Banach Center Publications, 77(2007), 89-114.
[5] V. Ilea, A. Novac, D. Otrocol, Fixed point results for weakly Picard non-self operators on Rm+ -metric spaces, sent for publication.
[6] V. Ilea, D. Otrocol, I.A. Rus, M.A. Serban, Applications of fibre contraction principle to some classes of functional integral equations, Fixed Point Theory, 23(2022), no. 1, 279-292.
[7] J.M. Ortega, W.C. Reinboldt, On a class of approximative iterative processes, Arch. Rat. Mech. Anal., 23(1967), 352-365.
[8] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
[9] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58(2003), no.1, 191-219.
[10] I.A. Rus, Metric space with fixed point property with respect to contractions, Stud. Univ. BabesBolyai Math., 51(2006), no. 3, 115-121.
[11] I.A. Rus, The theory of a metrical fixed point theorem: Theoretical and applicative relevances, Fixed Point Theory, 9(2008), no. 2, 541-559.
[12] I.A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babe¸s-Bolyai Math. 61(2016), no. 3, 343–358.
[13] I.A. Rus, A. Petrusel, M.A. Serban, Weakly Picard operators: Equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
[14] I.A. Rus, M.A. Serban, Some generalizations of a Cauchy lemma and applications, Topics in Mathematics, Computer Science and Philosophy, Presa Universitar˘a Clujeana, 2008, 173-181.
[15] M.A. Serban, Fibre contraction theorem in generalized metric spaces, Automat. Comput. Appl. Math., 16(2007), no. 1, 139-144.
[16] M.A. Serban, Saturated fibre contraction principle, Fixed Point Theory, 18(2017), no. 2, 729–740.

Fixed Point Theory, 26(2025), No.1, 177-188

DOI: 10.24193/fpt-ro.2022.1.XX

http://www.math.ubbcluj.ro/nodeacj/sfptcj.html

Fixed point results for non-self operators on +m\mathbb{R}_{+}^{m}-metric spaces

Veronica Ilea, Adela Novac∗∗, Diana Otrocol∗∗

Babeş–Bolyai University, Department of Mathematics, 1 M. Kogălniceanu Street, 400084 Cluj-Napoca, Romania
E-mail: veronica.ilea@ubbcluj.ro
∗∗Technical University of Cluj-Napoca, Department of Mathematics, 28 Memorandumului Street, 400114 Cluj-Napoca, Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy, P.O.Box. 68-1, 400110 Cluj-Napoca, Romania
E-mail: adela.novac@math.utcluj.ro, diana.otrocol@math.utcluj.ro

Abstract. The purpose of this paper is to discuss some problems of the fixed point theory for non-self operators on +m\mathbb{R}_{+}^{m}-metric spaces. The results complement and extend some known results given in the paper: A. Chis-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory, 10(2009), No. 1, 73–87.
Key Words and Phrases: +m\mathbb{R}_{+}^{m}-metric spaces, fixed point, Picard operator, non-self operator, data dependence of the fixed point.

2020 Mathematics Subject Classification: 47H10, 54H25.

1. Introduction

1.1. Notations

We begin the introduction by some standard notations that will be used throughout the paper.

Let (X,d)(X,d) be a +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty subset of XX and f:YXf:Y\rightarrow X an operator. In what follow we shall use the following notations:

Ff={xY:f(x)=x}F_{f}=\{x\in Y:f(x)=x\} - the fixed points set of f.f.

Pcl(X)={YX|Y is closed}P_{cl}(X)=\{Y\subset X|Y\text{ is closed}\}

I(f)={ZY:f(Z)Z,Z}I(f)=\{Z\subset Y:f(Z)\subset Z,Z\neq\varnothing\} - the set of invariant subsets of f.f.

(MI)f=I(f)(MI)_{f}=\cup I(f)- the maximal invariant subset of f.f.

1.2. Non-self operators on LL-spaces

In what follow we denote an LL-space by (X,𝐹)(X,\overset{F}{\rightarrow}). Let YXY\subset X a nonempty subset of XX and f:YXf:Y\rightarrow X an operator. Throughout this paper we consider that YPcl(X)Y\in P_{cl}(X).

(AB)f(x)={xY:fn(x)(AB)_{f}(x^{\ast})=\{x\in Y:f^{n}(x) is defined for all nn\in\mathbb{N} and fn(x)xFf}f^{n}(x)\rightarrow x^{\ast}\in F_{f}\}-the attraction basin of the fixed point xx^{\ast} with respect to f.f.

(BA)f=xFf(AB)f(x)(BA)_{f}=\underset{x^{\ast}\in F_{f}}{\cup}(AB)_{f}(x^{\ast})- the attraction basin of f.f.

Following [3] we have:

Definition 1.1.

An operator f:YXf:Y\rightarrow X is said to be a Picard operator (PO) if

(i) Ff={xf};F_{f}=\{x_{f}^{\ast}\};

(ii) (MI)f=(BA)f.(MI)_{f}=(BA)_{f}.

Definition 1.2.

An operator f:YXf:Y\rightarrow X is said to be a weakly Picard operator (WPO) if

(i) Ff;F_{f}\neq\emptyset;

(ii) (MI)f=(BA)f.(MI)_{f}=(BA)_{f}.

Definition 1.3.

For each WPO f:YX\,f:Y\rightarrow X we define the operator  f:(BA)f(BA)ff^{\infty}:\left(BA\right)_{f}\rightarrow\left(BA\right)_{f}  by f(x)=limnfn(x).f^{\infty}(x)=\lim\limits_{n\rightarrow\infty}f^{n}(x).

Remark 1.4.

It is clear that f((BA)f)=Ff,f^{\infty}((BA)_{f})=F_{f}, so ff^{\infty} is a set retraction of (BA)f(BA)_{f} to Ff.F_{f}.

Remark 1.5.

In terms of weakly Picard self operators the above definitions take the following form:

f:YX is a PO iff f(MI)f:(MI)f(MI)f is a PO.f:Y\rightarrow X\,\text{ is a PO \ \ iff\thinspace}\;\;f\mid_{(MI)_{f}}:(MI)_{f}\rightarrow(MI)_{f}\text{ is a PO.}
Remark 1.6.

We have the above notions in each distance structures which induces an LL-space convergence (+m\mathbb{R}_{+}^{m}-metrics, s(+)s(\mathbb{R}_{+}) metrics, KK-metrics, partial metrics, dislocated metrics, …).

For other results on Picard and weakly Picard operators see [1], [2], [4], [8], [9], [11].

1.3. Operators on +m\mathbb{R}_{+}^{m}-metric spaces

Definition 1.7.

An operator f:XXf:X\rightarrow X is an SS-contraction if there exists S+m×mS\in\mathbb{R}_{+}^{m\times m} such that:

  • (i)

    SS is a convergent to zero matrix, i.e. Sn0S^{n}\rightarrow 0 asn\ n\rightarrow\infty;

  • (ii)

    d(f(x),f(y))Sd(x,y),d(f(x),f(y))\leq Sd(x,y), for all x,yXx,y\in X.

The following results, in +m\mathbb{R}_{+}^{m}-metric spaces were well known.

Theorem 1.8.

(Saturated Perov-Schröder Theorem) Let (X,d)(X,d) be a complete +m\mathbb{R}_{+}^{m}-metric space. We suppose that, f:XXf:X\rightarrow X and S+m×mS\in\mathbb{R}_{+}^{m\times m} are such that:

  1. (1)

    SS is a matrix convergent to matrix 0;0;

  2. (2)

    d(f(x),f(y))Sd(x,y),x,yX.d(f(x),f(y))\leq Sd(x,y),\ \forall x,y\in X.

Then:

  1. (i)

    Ff=Ffn={x},n;F_{f}=F_{f^{n}}=\{x^{\ast}\},\ \forall n\in\mathbb{N}^{\ast};

  2. (ii)

    ff is Picard mapping, i.e., fn(x)xf^{n}(x)\rightarrow x^{\ast} as n,xX;n\rightarrow\infty,\ \forall x\in X;

  3. (iii)

    d(x,x)(IS)1d(x,f(x)),xX.d(x,x^{\ast})\leq(I-S)^{-1}d(x,f(x)),\ \ \forall x\in X.

  4. (iv)

    the fixed point equation, x=f(x)x=f(x) is Ulam-Hyers stable;

  5. (v)

    if xnX,d(xn,f(xn))0x_{n}\in X,\ d(x_{n},f(x_{n}))\rightarrow 0 as n,n\rightarrow\infty, then, xnxx_{n}\rightarrow x^{\ast} as n,n\rightarrow\infty, i.e. the fixed point problem for ff is well posed;

  6. (vi)

    if xnX,nx_{n}\in X,n\in\mathbb{N} are such that

    d(xn+1,f(xn))0 as n,d(x_{n+1},f(x_{n}))\rightarrow 0\text{ as }n\rightarrow\infty,

    then for all xXx\in X we have

    d(xn,x)0 as n,d(x_{n},x^{\ast})\rightarrow 0\text{ as }n\rightarrow\infty,

    i.e. ff has the Ostrowski property.

For this result and other results on fixed point theory in a +m\mathbb{R}_{+}^{m}-metric space see [6], [7], [10], [12].

The aim of this paper is to complement and extend the mentioned results in the case of non-self operators.

2. Metric conditions on non-self operators on +m\mathbb{R}_{+}^{m}-metrics and fixed points

Let (X,d)(X,d) be a +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty subset and f:YXf:Y\rightarrow X an operator.

Definition 2.1.

The operators ff is an SS-contraction if S+m×mS\in\mathbb{R}_{+}^{m\times m} and ff is such that

  • (i)

    Sn0S^{n}\rightarrow 0 asn\ n\rightarrow\infty, i.e. SS is a matrix convergent to 0;

  • (ii)

    d(f(x),f(y))Sd(x,y),d(f(x),f(y))\leq Sd(x,y), for all x,yYx,y\in Y.

Definition 2.2.

The operator ff is a graphic SS-contraction if S+m×mS\in\mathbb{R}_{+}^{m\times m} is convergent to 0 and

d(f(x),f2(x))Sd(x,f(x)),xY.d(f(x),f^{2}(x))\leq Sd(x,f(x)),\forall x\in Y.
Definition 2.3.

The operator ff is a quasi SS-contraction if Ff={x},S+m×mF_{f}=\{x^{\ast}\},\ S\in\mathbb{R}_{+}^{m\times m} is convergent to 0 and

d(f(x),x)Sd(x,x),xY.d(f(x),x^{\ast})\leq Sd(x,x^{\ast}),\forall x\in Y.

By definition ff satisfies a retraction-displacement condition if Ff={x}F_{f}=\{x^{\ast}\} and there exists an increasing function ψ:+m+m,ψ(0)=0,\psi:\mathbb{R}_{+}^{m}\rightarrow\mathbb{R}_{+}^{m},\psi(0)=0, and is continuous in 0,0, such that

d(x,x)ψ(d(x,f(x))),xY.d(x,x^{\ast})\leq\psi\left(d(x,f(x))\right),\forall x\in Y.
Definition 2.4.

Let ψ\psi defined as in Definition 2.3. By definition ff is ψ\psi-PO if ff is PO with respect to 𝑑,\overset{d}{\rightarrow}, and

d(x,x)ψ(d(x,f(x))),x(MI)f.d(x,x^{\ast})\leq\psi\left(d(x,f(x))\right),\forall x\in(MI)_{f}.

In the terms of the above metric conditions we have the following results.

Theorem 2.5.

Let (X,d)(X,d) be an +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty subset and f:YXf:Y\rightarrow X be a SS-contraction with Ff={x}F_{f}=\{x^{\ast}\}. Then:

  • (i)

    d(x,x)(IS)1d(x,f(x)),xYd(x,x^{\ast})\leq(I-S)^{-1}d(x,f(x)),\forall x\in Y;

  • (ii)

    if g:YXg:Y\rightarrow X is such that d(f(x),g(x))η,xY,d(f(x),g(x))\leq\eta,\forall x\in Y, for some η(+)m,\eta\in\left(\mathbb{R}_{+}^{\ast}\right)^{m}, then

    d(y,x)(IS)1η,yFg;d(y^{\ast},x^{\ast})\leq(I-S)^{-1}\eta,\ \forall y^{\ast}\in F_{g};
  • (iii)

    if yYy\in Y is such that

    d(y,f(y))ε,d(y,f(y))\leq\varepsilon,

    for some ε(+)m,\varepsilon\in\left(\mathbb{R}_{+}^{\ast}\right)^{m}, then

    d(y,x)(IS)1ε,d(y,x^{\ast})\leq(I-S)^{-1}\varepsilon,

    i.e., the equation x=f(x)x=f(x) is Ulam-Hyers stable;

  • (iv)

    xnY,n,d(xn,f(xn))0x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast}as n,n\rightarrow\infty, i.e. the fixed point problem for ff is well posed.

  • (v)

    xnY,n,d(xn+1,f(xn))0x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n+1},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast}as n,n\rightarrow\infty, i.e. ff has the Ostrowski property.

Proof.

(i) We have for xY,x\in Y,

d(x,x)d(x,f(x))+d(f(x),x)d(x,f(x))+Sd(x,x).d(x,x^{\ast})\leq d(x,f(x))+d(f(x),x^{\ast})\leq d(x,f(x))+Sd(x,x^{\ast}).

From this it follows

(IS)d(x,x)d(x,f(x)).(I-S)d(x,x^{\ast})\leq d(x,f(x)).

Since SS is a matrix convergent to 0, there exists (IS)1(I-S)^{-1} and (IS)10(I-S)^{-1}\geq 0, i.e., the corresponding function, (IS)1:+m×m+m,η(IS)1η(I-S)^{-1}:\mathbb{R}_{+}^{m\times m}\rightarrow\mathbb{R}_{+}^{m},\ \eta\mapsto(I-S)^{-1}\eta is increasing, with value 0 at 0 and continuous. So we have (i)(i), a retraction-displacement condition.

(ii) From (i),(i),

d(y,x)\displaystyle d(y^{\ast},x^{\ast}) (IS)1d(y,f(y))=(IS)1d(g(y),f(y))\displaystyle\leq(I-S)^{-1}d(y^{\ast},f(y^{\ast}))=(I-S)^{-1}d(g(y^{\ast}),f(y^{\ast}))
(IS)1η.\displaystyle\leq(I-S)^{-1}\eta.

(iii) From (i),(i),

d(y,x)(IS)1d(y,f(y))(IS)1ε.d(y,x^{\ast})\leq(I-S)^{-1}d(y,f(y))\leq(I-S)^{-1}\varepsilon.

(iv) The proof follows directly from (i).

(v) Since f:YXf:Y\rightarrow X is an SS-contraction with Ff={x}F_{f}=\{x^{\ast}\} it follows that, ff is a quasi SS-contraction. So, we have,

d(xn+1,x)\displaystyle d(x_{n+1},x^{\ast}) d(xn+1,f(xn))+d(f(xn),x)\displaystyle\leq d(x_{n+1},f(x_{n}))+d(f(x_{n}),x^{\ast})\leq
d(xn+1,f(xn))+Sd(xn,x)\displaystyle\leq d(x_{n+1},f(x_{n}))+Sd(x_{n},x^{\ast})\leq
d(xn+1,f(xn))+Sd(xn,f(xn1))+S2d(xn1,x)\displaystyle\leq d(x_{n+1},f(x_{n}))+Sd(x_{n},f(x_{n-1}))+S^{2}d(x_{n-1},x^{\ast})\leq\ldots\leq
d(xn+1,f(xn))+Sd(xn,f(xn1))++Snd(x1,f(x0))+Sn+1d(x0,x).\displaystyle\leq d(x_{n+1},f(x_{n}))+Sd(x_{n},f(x_{n-1}))+\ldots+S^{n}d(x_{1},f(x_{0}))+S^{n+1}d(x_{0},x^{\ast}).

So, d(xn+1,x)0d(x_{n+1},x^{\ast})\rightarrow 0 as nn\rightarrow\infty, by a Cauchy-Toeplitz lemma (see [13]). ∎

Theorem 2.6.

Let (X,d)(X,d) be an +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty subset and f:YXf:Y\rightarrow X be an operator such that,

d(f(x),f(y))Pd(x,f(x))+Qd(y,f(y))+Rd(x,y),d(f(x),f(y))\leq Pd(x,f(x))+Qd(y,f(y))+Rd(x,y), (2.1)

for all x,yY,x,y\in Y, where P,Q,R+m×mP,Q,R\in\mathbb{R}_{+}^{m\times m}. We suppose that, Ff={x}F_{f}=\{x^{\ast}\} and (IR)10.(I-R)^{-1}\geq 0. Then we have that:

  • (i)

    d(x,x)Cd(x,f(x)),xYd(x,x^{\ast})\leq Cd(x,f(x)),\ \forall x\in Y, where C:=(IR)1(I+P)C:=(I-R)^{-1}(I+P);

  • (ii)

    if g:YXg:Y\rightarrow X is such that d(f(x),g(x))η,xY,d(f(x),g(x))\leq\eta,\forall x\in Y, for some η(+)m,\eta\in\left(\mathbb{R}_{+}^{\ast}\right)^{m}, then

    d(y,x)Cη,yFg;d(y^{\ast},x^{\ast})\leq C\eta,\ \forall y^{\ast}\in F_{g};
  • (iii)

    if yYy\in Y is such that

    d(y,f(y))ε,d(y,f(y))\leq\varepsilon,

    for some ε(+)m,\varepsilon\in\left(\mathbb{R}_{+}^{\ast}\right)^{m}, then

    d(y,x)Cε,d(y,x^{\ast})\leq C\varepsilon,

    i.e., the equation x=f(x)x=f(x) is Ulam-Hyers stable;

  • (iv)

    xnY,n,d(xn,f(xn))0x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast}as n,n\rightarrow\infty, i.e. the fixed point problem for ff is well posed.

Proof.

(i) We have for xY,x\in Y,

d(x,x)\displaystyle d(x,x^{\ast}) d(x,f(x))+d(f(x),x)d(x,f(x))+d(f(x),f(x))\displaystyle\leq d(x,f(x))+d(f(x),x^{\ast})\leq d(x,f(x))+d(f(x),f(x^{\ast}))
d(x,f(x))+Pd(x,f(x))+Qd(x,f(x))+Rd(x,x).\displaystyle\leq d(x,f(x))+Pd(x,f(x))+Qd(x^{\ast},f(x^{\ast}))+Rd(x,x^{\ast}).

From this it follows

(IR)d(x,x)(I+P)d(x,f(x)),xY.(I-R)d(x,x^{\ast})\leq(I+P)d(x,f(x)),\forall x\in Y.

So, d(x,x)(IR)1(I+P)d(x,f(x))d(x,x^{\ast})\leq(I-R)^{-1}(I+P)d(x,f(x)).

(ii) By applying (i) to yFgy^{\ast}\in F_{g}

d(y,x)\displaystyle d(y^{\ast},x^{\ast}) (IR)1(I+P)d(y,f(y))\displaystyle\leq(I-R)^{-1}(I+P)d(y^{\ast},f(y^{\ast}))
=(IR)1(I+P)d(g(y),f(y))\displaystyle=(I-R)^{-1}(I+P)d(g(y^{\ast}),f(y^{\ast}))
(IR)1(I+P)η,yFg.\displaystyle\leq(I-R)^{-1}(I+P)\eta,\forall y^{\ast}\in F_{g}.

(iii) We apply again (i) and obtain

d(y,x)(IR)1(I+P)d(y,f(y))=(IR)1(I+P)ε,yY.d(y,x^{\ast})\leq(I-R)^{-1}(I+P)d(y,f(y))=(I-R)^{-1}(I+P)\varepsilon,\forall y\in Y.

(iv) Let

d(xn,x)\displaystyle d(x_{n},x^{\ast}) d(xn,f(xn))+d(f(xn),f(x))\displaystyle\leq d(x_{n},f(x_{n}))+d(f(x_{n}),f(x^{\ast}))
d(xn,f(xn))+Pd(xn,f(xn))+Qd(x,f(x))+Rd(xn,x)\displaystyle\leq d(x_{n},f(x_{n}))+Pd(x_{n},f(x_{n}))+Qd(x^{\ast},f(x^{\ast}))+Rd(x_{n},x^{\ast})

We have

(IR)d(xn,x)(I+P)d(xn,f(xn)),(I-R)d(x_{n},x^{\ast})\leq(I+P)d(x_{n},f(x_{n})),

so, this implies that xnxx_{n}\rightarrow x^{\ast}as n,n\rightarrow\infty, i.e. the fixed point problem for ff is well posed. ∎

Theorem 2.7.

Let (X,d)(X,d) be an +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty subset and f:YXf:Y\rightarrow X be an operator such that,

d(f(x),f(y))Pd(x,f(x))+Qd(y,f(y))+Rd(x,y),d(f(x),f(y))\leq Pd(x,f(x))+Qd(y,f(y))+Rd(x,y), (2.2)

for all x,yY,x,y\in Y, where P,Q,R+mP,Q,R\in\mathbb{R}_{+}^{m}. We suppose that, (IP)10(I-P)^{-1}\geq 0 and the matrix (IP)1(P+R)(I-P)^{-1}(P+R) is convergent to 0. Then we have that:

  • (i)

    d(f(x),x)(IP)1(P+R)d(x,x),xYd(f(x),x^{\ast})\leq(I-P)^{-1}(P+R)d(x,x^{\ast}),\ \forall x\in Y, i.e., ff is a quasi contraction;

  • (ii)

    xnY,n,d(xn+1,f(xn))0x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n+1},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast} as nn\rightarrow\infty.

Proof.
  • (i)
    d(f(x),x)=d(f(x),f(x))\displaystyle d(f(x),x^{\ast})=d(f(x),f(x^{\ast})) Pd(x,f(x))+Qd(x,f(x))+Rd(x,x)\displaystyle\leq Pd(x,f(x))+Qd(x^{\ast},f(x^{\ast}))+Rd(x,x^{\ast})
    P[d(x,x)+d(x,f(x))]+Rd(x,x).\displaystyle\leq P[d(x,x^{\ast})+d(x^{\ast},f(x))]+Rd(x,x^{\ast}).
    (IP)d(f(x),x)(P+R)d(x,x).(I-P)d(f(x),x^{\ast})\leq(P+R)d(x,x^{\ast}).

    Thus, follows the conclusion.

  • (ii)

    Let

    d(xn+1,x)\displaystyle d(x_{n+1},x^{\ast}) d(xn+1,f(xn))+d(f(xn),x)\displaystyle\leq d(x_{n+1},f(x_{n}))+d(f(x_{n}),x^{\ast})
    d(xn+1,f(xn))+(IP)1(P+R)d(xn,x)\displaystyle\leq d(x_{n+1},f(x_{n}))+(I-P)^{-1}(P+R)d(x_{n},x^{\ast})

    We have

    d(xn+1,x)\displaystyle d(x_{n+1},x^{\ast}) (IP)1(P+R)d(xn,x)\displaystyle\leq(I-P)^{-1}(P+R)d(x_{n},x^{\ast})
    (IP)1(P+R)[d(xn,f(xn1))+d(f(xn1,x))]\displaystyle\leq(I-P)^{-1}(P+R)\left[d(x_{n},f(x_{n-1}))+d(f(x_{n-1},x^{\ast}))\right]
    [(IP)1(P+R)]2d(xn1,x)\displaystyle\leq\left[(I-P)^{-1}(P+R)\right]^{2}d(x_{n-1},x^{\ast})
    \displaystyle\leq\ldots
    [(IP)1(P+R)]n+1d(x0,x),\displaystyle\leq\left[(I-P)^{-1}(P+R)\right]^{n+1}d(x_{0},x^{\ast}),

    so, this implies that xn+1xx_{n+1}\rightarrow x^{\ast} as nn\rightarrow\infty.

By a similar proofs as above we have the following results:

Theorem 2.8.

Let (X,d)(X,d) be an +m\mathbb{R}_{+}^{m}-metric space and YXY\subset X a nonempty subset. We suppose that f:YXf:Y\rightarrow X is a ψ\psi-PO with Ff={x}.F_{f}=\{x^{\ast}\}. Then we have that:

  • (i)

    if g:YXg:Y\rightarrow X is such that d(f(x),g(x))η,xY,d(f(x),g(x))\leq\eta,\forall x\in Y, for some η(+)m,\eta\in\left(\mathbb{R}_{+}^{\ast}\right)^{m}, then

    d(y,x)ψ(η),yFg(MI)f;d(y^{\ast},x^{\ast})\leq\psi(\eta),\ \forall y^{\ast}\in F_{g}\cap(MI)_{f};
  • (ii)

    if yY(MI)fy\in Y\cap(MI)_{f} is such that

    d(y,f(y))ε,d(y,f(y))\leq\varepsilon,

    for some ε(+)m,\varepsilon\in\left(\mathbb{R}_{+}^{\ast}\right)^{m}, then

    d(y,x)ψ(ε),d(y,x^{\ast})\leq\psi(\varepsilon),

    i.e., the equation x=f(x)x=f(x) is Ulam-Hyers stable;

  • (iii)

    xn(MI)f,n,d(xn,f(xn))0x_{n}\in(MI)_{f},\ n\in\mathbb{N},\ d(x_{n},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast}as n,n\rightarrow\infty, i.e. the fixed point problem for ff is well posed.

Proof.
  • (i)
    d(y,x)\displaystyle d(y^{\ast},x^{\ast}) ψ(d(y,f(y)))=ψ(d(f(y),g(y)))\displaystyle\leq\psi(d(y^{\ast},f(y^{\ast})))=\psi(d(f(y^{\ast}),g(y^{\ast})))
    ψ(η).\displaystyle\leq\psi(\eta).
  • (ii)
    d(y,x)ψ(d(y,f(y)))ψ(ε)d(y,x^{\ast})\leq\psi(d(y,f(y)))\leq\psi(\varepsilon)
  • (iii)
    d(xn,x)ψ(d(xn,f(xn)))nψ(0)=0d(x_{n},x^{\ast})\leq\psi(d(x_{n},f(x_{n})))\underset{n\rightarrow\infty}{\rightarrow}\psi(0)=0

    So xnxx_{n}\rightarrow x^{\ast}as n.n\rightarrow\infty.

Theorem 2.9.

Let (X,d)(X,d) be an +m\mathbb{R}_{+}^{m}-metric space and YXY\subset X a nonempty subset. We suppose that f:YXf:Y\rightarrow X is a quasi SS-contraction. Then the following implication holds:

xnY,n,d(xn+1,f(xn))0as n implies that xnxas n.x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n+1},f(x_{n}))\rightarrow 0\ \text{as\ }n\rightarrow\infty\text{\ implies that }x_{n}\rightarrow x^{\ast}\ \text{as\ }n\rightarrow\infty.
Proof.

The conclusion follows from Theorem 2.7. ∎

Remark 2.10.

The Theorem 2.6 and Theorem 2.7, in the case P:=α+,Q:=β+,R:=γ+P:=\alpha\in\mathbb{R}_{+},\ Q:=\beta\in\mathbb{R}_{+},R:=\gamma\in\mathbb{R}_{+}, take the following form:

Theorem 2.11.

Let (X,d)(X,d) be an +\mathbb{R}_{+}-metric space, YXY\subset X a nonempty subset and f:YXf:Y\rightarrow X be an operator such that,

d(f(x),f(y))αd(x,f(x))+βd(y,f(y))+γd(x,y),d(f(x),f(y))\leq\alpha d(x,f(x))+\beta d(y,f(y))+\gamma d(x,y), (2.3)

for all x,yY,x,y\in Y, where α,β,γ+\alpha,\beta,\gamma\in\mathbb{R}_{+}. We suppose that, Ff={xf}F_{f}=\{x_{f}^{\ast}\} and γ<1.\gamma<1. Then we have that:

  • (i)

    d(x,x)Cd(x,f(x)),xYd(x,x^{\ast})\leq Cd(x,f(x)),\ \forall x\in Y, where C:=1+α1γC:=\dfrac{1+\alpha}{1-\gamma};

  • (ii)

    if g:YXg:Y\rightarrow X is such that d(f(x),g(x))η,xY,d(f(x),g(x))\leq\eta,\forall x\in Y, for some η+,\eta\in\mathbb{R}_{+}^{\ast}, then

    d(y,x)Cη,yFg;d(y^{\ast},x^{\ast})\leq C\eta,\ \forall y^{\ast}\in F_{g};
  • (iii)

    if yYy\in Y is such that

    d(y,f(y))ε,d(y,f(y))\leq\varepsilon,

    for some ε+,\varepsilon\in\mathbb{R}_{+}^{\ast}, then

    d(y,x)Cε,d(y,x^{\ast})\leq C\varepsilon,

    i.e., the equation x=f(x)x=f(x) is Ulam-Hyers stable;

  • (iv)

    xnY,n,d(xn,f(xn))0x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast}as n,n\rightarrow\infty, i.e. the fixed point problem for ff is well posed.

Theorem 2.12.

Let (X,d)(X,d) be an +\mathbb{R}_{+}-metric space, YXY\subset X a nonempty subset and f:YXf:Y\rightarrow X be an operator such that,

d(f(x),f(y))αd(x,f(x))+βd(y,f(y))+γd(x,y),d(f(x),f(y))\leq\alpha d(x,f(x))+\beta d(y,f(y))+\gamma d(x,y), (2.4)

for all x,yY,x,y\in Y, where α,β,γ+\alpha,\beta,\gamma\in\mathbb{R}_{+}. We suppose that, α<1\alpha<1. Then we have that:

  • (i)

    d(f(x),x)α+γ1αd(x,x),xYd(f(x),x^{\ast})\leq\dfrac{\alpha+\gamma}{1-\alpha}d(x,x^{\ast}),\ \forall x\in Y, i.e., ff is a quasicontraction;

  • (ii)

    xnY,n,d(xn+1,f(xn))0x_{n}\in Y,\ n\in\mathbb{N},\ d(x_{n+1},f(x_{n}))\rightarrow 0 as nn\rightarrow\infty implies that xnxx_{n}\rightarrow x^{\ast}as nn\rightarrow\infty.

3. Fibre non-self contraction principle

In this section we obtain the fibre contraction principle for non-self operators in +m\mathbb{R}_{+}^{m}-metric space.

Theorem 3.1.

Let (X,d)(X,d) be an +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty set and (Y1,d)(Y_{1},d) a complete metric space. Let g:YX,g:Y\rightarrow X, h(x,):Y1Y1h(x,\cdot):Y_{1}\rightarrow Y_{1} and f:Y×Y1X×Y1,f:Y\times Y_{1}\rightarrow X\times Y_{1},\, f(x,y)=(g(x),h(x,y)).f(x,y)=(g(x),h(x,y)). We suppose that:

(i) gg is a PO;

(ii) there exists SS a convergent to zero matrix such that

d(h(x,y),h(x,z))Sd(y,z), d(h(x,y),h(x,z))\leq Sd(y,z),\text{ }

for all x(AB)gx\in(AB)_{g} and y,zY1;y,z\in Y_{1};

(iii) ff is continuous.

Then ff is a PO.

Proof.

First of all we remark that (MI)f=(MI)g×Y1(MI)_{f}=(MI)_{g}\times Y_{1} and (MI)g=(AB)g.(MI)_{g}=(AB)_{g}. Let x0(AB)gx_{0}\in(AB)_{g} and y0Y1y_{0}\in Y_{1}. Define xn+1=g(xn),x_{n+1}=g(x_{n}), yn+1=h(xn,yn)y_{n+1}=h(x_{n},y_{n}) for n.n\in\mathbb{N}. It is clear that xnxFgx_{n}\rightarrow x^{\ast}\in F_{g} as n.n\rightarrow\infty. Since h(x,)h(x^{\ast},\cdot) is an SS-contraction, Fh(x,)={y}.F_{h(x^{\ast},\cdot)}=\{y^{\ast}\}. Let us prove that yny.y_{n}\rightarrow y^{\ast}. We have

d(yn+1,y)\displaystyle d(y_{n+1},y^{\ast}) =d(h(xn,yn),y)\displaystyle=d(h(x_{n},y_{n}),y^{\ast})
d(h(xn,yn),h(xn,y))+d(h(xn,y),y)\displaystyle\leq d(h(x_{n},y_{n}),h(x_{n},y^{\ast}))+d(h(x_{n},y^{\ast}),y^{\ast})
Sd(yn,y)+d(h(xn,y),y)\displaystyle\leq Sd(y_{n},y^{\ast})+d(h(x_{n},y^{\ast}),y^{\ast})
\displaystyle...
Sn+1d(y0,y)+Snd(h(x0,y),y)+\displaystyle\leq S^{n+1}d(y_{0},y^{\ast})+S^{n}d(h(x_{0},y^{\ast}),y^{\ast})+
+Sd(h(xn1,y),y)+d(h(xn,y),y).\displaystyle...+Sd(h(x_{n-1},y^{\ast}),y^{\ast})+d(h(x_{n},y^{\ast}),y^{\ast}).

Then d(yn+1,y)0,d(y_{n+1},y^{\ast})\rightarrow 0, by a Cauchy-Toeplitz lemma (see [13]), so ff is a PO. ∎

The above result is very useful to study of the differentiability of solutions of operator equations with respect to a parameter. For example, let us consider the following equation

x(t,λ)=F(t,x(t,λ),λ), t[a,b], λJx(t,\lambda)=F(t,x(t,\lambda),\lambda),\text{\ \thinspace}t\in[a,b],\text{ }\lambda\in J\subset\mathbb{R} (3.1)

and F:[a,b]×+m×J+m.F:[a,b]\times\mathbb{R}_{+}^{m}\times J\rightarrow\mathbb{R}_{+}^{m}. We suppose that:

(H1) JJ\subset\mathbb{R} is a compact interval;

(H2) FC([a,b]×+m×J,+m);F\in C([a,b]\times\mathbb{R}_{+}^{m}\times J,\mathbb{R}_{+}^{m});

(H3) F(t,,)C1(+m×J)F(t,\cdot,\cdot)\in C^{1}(\mathbb{R}_{+}^{m}\times J)\; for every t[a,b];t\in[a,b];

(H4) (|Fjui(t,u,λ)|)i,j=1mS,\left(\left|\dfrac{\partial F_{j}}{\partial u_{i}}(t,u,\lambda)\right|\right)_{i,j=1}^{m}\leq S, SS convergent to zero, for every t[a,b],t\in[a,b], u+m,u\in\mathbb{R}_{+}^{m}, αi,λJ,i=1,m¯.\alpha_{i}\in\mathbb{R},\ \lambda\in J,\ i=\overline{1,m}.

(H5) equation (3.1) has at least one solution.

Then we have:

Theorem 3.2.

Under the conditions (H1)-(H5) the equation (3.1) has in C([a,b]×J,+m)C([a,b]\times J,\mathbb{R}_{+}^{m}) a unique solution xx^{\ast} and x(t,)C1(J)x^{\ast}(t,\cdot)\in C^{1}(J) for every t[a,b].t\in[a,b].

Proof.

Let X=C([a,b]×J,+m)X=C([a,b]\times J,\mathbb{R}_{+}^{m}) with norm .C\left\|.\right\|_{C} and let B:C([a,b]×J,+m)C([a,b]×J,+m)B:C([a,b]\times J,\mathbb{R}_{+}^{m})\rightarrow C([a,b]\times J,\mathbb{R}_{+}^{m}) be defined by B(x)(t,λ)=F(t,x(t,λ),λ).B(x)(t,\lambda)=F(t,x(t,\lambda),\lambda).

From conditions (H4) and (H5) it follows that FB={x}.F_{B}=\{x^{\ast}\}. Let Y={xC([a,b]×J,+m):Y=\{x\in C([a,b]\times J,\mathbb{R}_{+}^{m}): B(x)(t,λ)+m,B(x)(t,\lambda)\in\mathbb{R}_{+}^{m}, t[a,b],\forall t\in[a,b], λJ}.\lambda\in J\}. It is clear that xY,B(Y)Yx^{\ast}\in Y,\,B(Y)\subset Y and B:YYB:Y\rightarrow Y is a PO. Let x0Yx^{0}\in Y be such that there exists xi0λ\dfrac{\partial x_{i}^{0}}{\partial\lambda} and xi0λC([a,b]×J).\dfrac{\partial x_{i}^{0}}{\partial\lambda}\in C([a,b]\times J). Let us suppose that there exists xiλ.\dfrac{\partial x_{i}^{\ast}}{\partial\lambda}. Then we have that

xi(t,λ)λ=Fi(t,x(t,λ),λ)xixi(t,λ)λ+Fi(t,x(t,λ),λ)λ,i=1,m¯.\dfrac{\partial x_{i}^{\ast}(t,\lambda)}{\partial\lambda}=\dfrac{\partial F_{i}(t,x^{\ast}(t,\lambda),\lambda)}{\partial x_{i}}\cdot\dfrac{\partial x_{i}^{\ast}(t,\lambda)}{\partial\lambda}+\dfrac{\partial F_{i}(t,x^{\ast}(t,\lambda),\lambda)}{\partial\lambda},\ i=\overline{1,m}.

This relation suggests us to consider the following operators:

Ci:Y×C([a,b]×J)C([a,b]×J)C_{i}:Y\times C([a,b]\times J)\rightarrow C([a,b]\times J)

defined by

Ci(x,y)(t,λ)=Fi(t,x(t,λ),λ)xiy(t,λ)+Fi(t,x(t,λ),λ)λC_{i}(x,y)(t,\lambda)=\dfrac{\partial F_{i}(t,x(t,\lambda),\lambda)}{\partial x_{i}}\cdot y(t,\lambda)+\dfrac{\partial F_{i}(t,x(t,\lambda),\lambda)}{\partial\lambda}

and

A:Y×C([a,b]×J)Y×C([a,b]×J)A:Y\times C([a,b]\times J)\rightarrow Y\times C([a,b]\times J)

with

A(x,y)=(B(x),C(x,y)).A(x,y)=(B(x),C(x,y)).

From Theorem 3.1 we have that AA is a PO. This implies that the sequences xn+1=B(xn),x_{n+1}=B(x_{n}), yn+1=C(xn,yn)y_{n+1}=C(x_{n},y_{n}) are convergent, xnx,x_{n}\rightarrow x^{\ast}, ynyy_{n}\rightarrow y^{\ast} and x=B(x),x^{\ast}=B(x^{\ast}), y=C(x,y).y^{\ast}=C(x^{\ast},y^{\ast}).

Let us take yi0=xi0λ.y_{i}^{0}=\dfrac{\partial x_{i}^{0}}{\partial\lambda}. Then yi,n=xi,nλ.y_{i,n}=\dfrac{\partial x_{i,n}}{\partial\lambda}. So

xnx as n, with respect to the norm Cx_{n}\rightarrow x^{\ast}\text{ \ as }n\rightarrow\infty,\text{ with respect to the norm }\left\|\cdot\right\|_{C}

and

xi,nλyi as n.\dfrac{\partial x_{i,n}}{\partial\lambda}\rightarrow y_{i}^{\ast}\text{ \ as }n\rightarrow\infty.

These imply that yC1([a,b]×J,+m)y^{\ast}\in C^{1}([a,b]\times J,\mathbb{R}_{+}^{m}) and yi=xiλ,i=1,m¯.y_{i}^{\ast}=\dfrac{\partial x_{i}^{\ast}}{\partial\lambda},\ i=\overline{1,m}.

For other results regarding fibre contractions, see [5], [14], [15].

4. Data dependence in terms of ψ\psi-PO

Let (X,d)(X,d) be a +m\mathbb{R}_{+}^{m}-metric space, YXY\subset X a nonempty subset of XX and f,g:YXf,g:Y\rightarrow X  two operators.

Theorem 4.1.

Assume that the following conditions are satisfied:

(i) ff is ψ\psi-PO with Ff={x}F_{f}=\{x^{\ast}\};

(ii) Fg(BA)fF_{g}\subset(BA)_{f} ;

(iii) there exists η+m\eta\in\mathbb{R}_{+}^{m} such that

d(f(x),g(x))η for all xY.d(f(x),g(x))\leq\eta\text{ \ \ \ for all\thinspace\ }x\in Y.

Then

d(x,y)ψ(η),yFg.d(x^{\ast},y^{\ast})\leq\psi(\eta),\ \forall y^{\ast}\in F_{g}.
Proof.

Let yFg,y(BA)(x).y^{\ast}\in F_{g},\ y^{\ast}\in(BA)(x^{\ast}). Then

d(y,x)\displaystyle d(y^{\ast},x^{\ast}) ψ(d(y,f(y)))=ψ(d(g(y),f(y)))\displaystyle\leq\psi(d(y^{\ast},f(y^{\ast})))=\psi(d(g(y^{\ast}),f(y^{\ast})))
ψ(η).\displaystyle\leq\psi(\eta).

Another result in the case of strict φ\varphi-contractions is the following.

Theorem 4.2.

Assume that the following conditions are satisfied:

(i) ff is a strict φ\varphi-contraction with Ff={xf};F_{f}=\{x_{f}^{\ast}\};

(ii) Fg;F_{g}\neq\emptyset;

(iii) there exists η+m\eta\in\mathbb{R}_{+}^{m} such that

d(f(x),g(x))η, for all xY.d(f(x),g(x))\leq\eta,\text{ \ for all\ }x\in Y.

Then

d(xg,xf)ψφ(η), for all xgFg.d(x_{g}^{\ast},x_{f}^{\ast})\leq\psi_{\varphi}(\eta),\text{ \ for all \thinspace}x_{g}^{\ast}\in F_{g}.
Proof.

Let xgFg.x_{g}^{\ast}\in F_{g}. We have

d(xg,xf)\displaystyle d(x_{g}^{\ast},x_{f}^{\ast}) d(xg,f(xg))+d(f(xg),xf)\displaystyle\leq d(x_{g}^{\ast},f(x_{g}^{\ast}))+d(f(x_{g}^{\ast}),x_{f}^{\ast})
=d(g(xg),f(xg))+d(f(xg),f(xf))\displaystyle=d(g(x_{g}^{\ast}),f(x_{g}^{\ast}))+d(f(x_{g}^{\ast}),f(x_{f}^{\ast}))
η+φ(d(xg,xf)).\displaystyle\leq\eta+\varphi(d(x_{g}^{\ast},x_{f}^{\ast})).

Hence

d(xg,xf)φ(d(xg,xf))η.d(x_{g}^{\ast},x_{f}^{\ast})-\varphi(d(x_{g}^{\ast},x_{f}^{\ast}))\leq\eta.

Then

d(xg,xf)ψφ(η).d(x_{g}^{\ast},x_{f}^{\ast})\leq\psi_{\varphi}(\eta).

We also have the following result:

Theorem 4.3.

Assume that the following conditions are satisfied:

(i) there exist P,Q+m×m,P,Q\in\mathbb{R}_{+}^{m\times m}, PP convergent to 0 matrix, such that

d(f(x),f(y))Pd(x,y)+Q[d(x,f(x))+d(y,f(y))]d(f(x),f(y))\leq Pd(x,y)+Q[d(x,f(x))+d(y,f(y))]

for all x,yX,x,y\in X, and let Ff={xf};F_{f}=\{x_{f}^{\ast}\};

(ii) Fg;F_{g}\neq\emptyset;

(iii) there exists η+m\eta\in\mathbb{R}_{+}^{m} such that

d(f(x),g(x))η, for all xY.d(f(x),g(x))\leq\eta,\;\text{ for all\thinspace\ }x\in Y.

Then

d(xg,xf)(IP)1(I+Q)η, for all xgFg.d(x_{g}^{\ast},x_{f}^{\ast})\leq(I-P)^{-1}(I+Q)\eta,\text{ \ for all\thinspace\ }x_{g}^{\ast}\in F_{g}. (4.1)
Proof.

Let xgFg.x_{g}^{\ast}\in F_{g}. We have

d(xg,xf)\displaystyle d(x_{g}^{\ast},x_{f}^{\ast}) d(xg,f(xg))+d(f(xg),xf)\displaystyle\leq d(x_{g}^{\ast},f(x_{g}^{\ast}))+d(f(x_{g}^{\ast}),x_{f}^{\ast})
=d(g(xg),f(xg))+d(f(xg),f(xf))\displaystyle=d(g(x_{g}^{\ast}),f(x_{g}^{\ast}))+d(f(x_{g}^{\ast}),f(x_{f}^{\ast}))
η+Pd(xg,xf)+Q[d(xg,f(xg))+d(xf,f(xf))]\displaystyle\leq\eta+Pd(x_{g}^{\ast},x_{f}^{\ast})+Q\left[d(x_{g}^{\ast},f(x_{g}^{\ast}))+d(x_{f}^{\ast},f(x_{f}^{\ast}))\right]
=η+Pd(xg,xf)+Qd(xg,f(xg))\displaystyle=\eta+Pd(x_{g}^{\ast},x_{f}^{\ast})+Qd(x_{g}^{\ast},f(x_{g}^{\ast}))
=η+Pd(xg,xf)+Qd(g(xg),f(xg))\displaystyle=\eta+Pd(x_{g}^{\ast},x_{f}^{\ast})+Qd(g(x_{g}^{\ast}),f(x_{g}^{\ast}))
η+Qη+Pd(xg,xf).\displaystyle\leq\eta+Q\eta+Pd(x_{g}^{\ast},x_{f}^{\ast}).

Then

(IP)d(xg,xf)(I+Q)η\left(I-P\right)d(x_{g}^{\ast},x_{f}^{\ast})\leq\left(I+Q\right)\eta

so

d(xg,xf)(IP)1(I+Q)η, for all xgFg.d(x_{g}^{\ast},x_{f}^{\ast})\leq\left(I-P\right)^{-1}\left(I+Q\right)\eta,\text{ for all\thinspace\ }x_{g}^{\ast}\in F_{g}.

References

  • [1] V. Berinde, S. Maruster, I.A. Rus, Saturated contraction principles for non-self operators, generalizations and applications, Filomat 31-11 (2017), 3391-3406.
  • [2] V. Berinde, A. Petruşel, I.A. Rus, Remarks on the terminology of the mappings in fixed point iterative methods in metric space, Fixed Point Theory 24 (2023), no. 2, 525–540.
  • [3] A. Chiş-Novac, R. Precup, I.A. Rus, Data dependence of fixed points for non-self generalized contractions, Fixed Point Theory 10 (2009), no. 1, 73–87.
  • [4] M. Frigon, Fixed point and continuation results for contractions and Gauge spaces, Banach Center Publications, 77 (2007),89-114.
  • [5] V. Ilea, D. Otrocol, I.A. Rus, M.A. Serban, Applications of fibre contraction principle to some classes of functional integral equations, Fixed Point Theory, 23 (2022), no. 1, 279-292.
  • [6] J.M. Ortega, W.C. Reinboldt, On a class of approximative iterative processes, Arch. Rat. Mech. Anal., 23 (1967), 352-365.
  • [7] I. A. Rus, Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca, 2001.
  • [8] I. A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae 58 (2003), no.1., 191-219.
  • [9] I. A. Rus, Metric space with fixed point property with respect to contractions, Studia Univ. Babeş-Bolyai Math. 51(2006), no. 3, 115-121.
  • [10] I. A. Rus, Some variants of contraction principle, generalizations and applications, Stud. Univ. Babeş-Bolyai Math. 61 (2016), no. 3, 343–358.
  • [11] I. A. Rus, A. Petruşel, M.A. Şerban, Weakly Picard Operators: equivalent definitions, applications and open problems, Fixed Point Theory 7 (2006), no. 1, 3-22.
  • [12] I. A. Rus, The theory of a metrical fixed point theorem: theoritical and applicative relevances, Fixed Point Theory, 9 (2008), no. 2, 541-559.
  • [13] I. A. Rus and M. A. Şerban, Some generalizations of a Cauchy Lemma and Applications, Topics in Mathematics, Computer Science and Philosophy, Presa Universitară Clujeană, 2008, 173-181.
  • [14] M.A. Serban, Fibre contraction theorem in generalized metric spaces, Automat. Comput. Appl. Math., 16 (2007), no. 1, 139-144.
  • [15] M.A. Serban, Saturated fibre contraction principle, Fixed Point Theory, 18 (2017), no. 2, 729–740.

Received: ; Accepted:

2025

Related Posts