Fixed points theorems for retractible mappings

Abstract

Authors

Mira-Cristiana Anisiu
Institutul de Matematica, Cluj-Napoca, Romania

Keywords

?

Paper coordinates

M.-C. Anisiu, Fixed points theorems for retractible mappings, Seminar on Functional Analysis and Numerical Methods, 1-10, Preprint, 89-1, Univ. Babeş-Bolyai Cluj-Napoca, 1989 (pdf file here)

PDF

About this paper

Journal

Preprint

Publisher Name

Babes-Bolyai University Cluj-Napoca, Romania

DOI
Print ISSN
Online ISSN

google scholar link

[1] M.C. Anisiu, Fixed points of retractible mappings with respect to the metric projection, ”Babes-Bolyai” Univ., Fac. of Math. Phys., Preprint nr.7, 1988, 87-96.
[2] M.C. Anisiu, V. Anisiu, On some conditions for the existence of the fixed points in Hilbert spaces, ”Babes-Bolyai” Univ., Fac. of Math. Phys., Preprint nr.6, 1989, 93-100.
[3] R.F. Brown, Retraction methods in Nielses fixed point theory, Pacific J. Math. 115 (1984), 277-298.
[4] W. Cheney, A.H. Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc. 10 (1959), 448-450.
[5] G. Darbo, Punti uniti in transformazioni a condominio noncompatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.
[6] T.C. Lin, C.L.Yen, Applications of the proximity map to fixed point theorems in Hilbert spaces, J. Approx. Theory 52 (1968), 141-148.
[7] I.A. Rus, The fixed point structures and the retraction mappings principle, ”Babes-Bolyai” Univ., Fac. of Math. Preprint nr.3, 1986, 175-184.
[8] S.P. Singh, B. Yatson, On approximating fixed points, Proc. of Symp. in Pure Math., Vol. 45 (1986), Part 2, 393-395.
[9] T.E. Willianson, The Leray-Schauder condition is necessary for existence of fixed points, Vol. 886, Lecture Notes in Math., Springer-Verlag, Berlin

1989-Anisiu-FixedPointTheorems
"BASES-BOLYAT" UNTVERSITT
Faculty of Cathematics and Digisies
Resuarch Seminars
Seminar on Punctional Analysis and Numerical Uetiods
Preprint Nr. 1, 1989, pp. 1 - 10.
FIXED POTNT THEORENS FOR
BÉTHACTITHETE MAPPINGS
Mira-Cristlana Anisiu
The fixed point theorems in this paper axtand some results in / 6 / / 6 / //6/// 6 //6/; if the retract is chosen to be the metric projection one abtains same known theorems.
We state firstly some dofinitions to be used in the following.
Iret X X XXX be a nonvoid set and l A X l A X l!in A <= Xl \notin A \leq XlAX. A A AAA map r t X Λ r t X Λ rtX rarr Lambdar t X \rightarrow \LambdartXΛ is a reEract of X X XXX on A A AAA if the restriction of r r rrr to the sot A A AAA is tha identity map id A : A A . A A : A A . A _(A):A rarr A.A{ }_{A}: A \rightarrow A . AA:AA.A map f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX is retractible on A A AAA with respect to the retract x x xxx if Fix rof = F i x f = F i x f =Fixf=F i x f=Fixf, where "Fix" donotes the sot of the fixed points of 2 map /3,?,1/.
It is obvious that always Fix rof sube\subseteq Fix f f fff, so in the definition. of the rotractible map one can darand only Fix f F i x f F i x f sube Fixf \subseteq F i xfFix rof. Brown in /3/ has given the following necossary and sufficient condition for the map f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX to ba ratractible on A A AAA with raspect te, the retract r :
x ˙ r ( f ( A ) A ) x ˙ r ( f ( A ) A ) x^(˙)in r(f(A)\\A)\dot{x} \in r(f(A) \backslash A)x˙r(f(A)A) impliss f ( x ) = x f ( x ) = x f(x)=xf(x)=xf(x)=x or f ( x ) r 1 ( x ) f ( x ) r 1 ( x ) f(x)!inr^(-1)(x)f(x) \notin r^{-1}(x)f(x)r1(x).
Lat B B BBB be a bounded nonampty sat in tha patric spaca X X XXX. The gassure of noncompactness in tha zanse of Kuratowsty, denated a ( B ) a ( B ) a(B)a(B)a(B), is the infimum of the numbers α α alpha\alphaα such that the set B B BBB can be covered
by 4 finite namber of subsets of X X XXX of diameter leas than or equal to α α alpha\alphaα.
Let A A AAA be a monvoid subset of the metric space X ¯ X ¯ bar(X)\bar{X}X¯ and I : A X I : A X I:A rarr XI: A \rightarrow XI:AX a aap. If there exists k , c k 1 k , c k 1 k,c <= k <= 1k, c \leqslant k \leqslant 1k,ck1 such that for each nonempty subset B B BBB of A, B baing bounded, wo have
a ( f ( B ) ) k a ( B ) a ( f ( B ) ) k a ( B ) a(f(B)) <= ka(B)a(f(B)) \leqslant k a(B)a(f(B))ka(B),
then f f fff is called x x xxx-set-contractive.
Bach nonexpansive map f : Λ X ( f : Λ X ( f:Lambda rarr X(f: \Lambda \rightarrow X(f:ΛX( i.e. d ( f ( x ) , f ( y ) ) d ( x , y ) d ( f ( x ) , f ( y ) ) d ( x , y ) d(f(x),f(y)) <= d(x,y)d(f(x), f(y)) \leqslant d(x, y)d(f(x),f(y))d(x,y) for each x , y x , y x,yx, yx,y in A) is obviously l-eiet-contractive.
In. the following we give a generalization of Theorem I in /6/, using in the proof the fixed point theoren of Darbot
THEORS: 1 /5/. Let X X XXX be a Banach space, A X A X A sube XA \subseteq XAX a closed convex nonvoid set, f : A A f : A A f:A longrightarrow Af: A \longrightarrow Af:AA continuous k k kkk-set-contractive with 0 < k < j 0 < k < j 0 < k < j0<k<j0<k<j. such that Z ( A ) Z ( A ) Z(A)\mathbb{Z}(\mathbb{A})Z(A) is a bounded set. Then Fix f f f!=O/f \neq \varnothingf.
In the initial form of Darbo'a theorem A is bounded, but it :'\because suffices to roquiro f ( A ) f ( A ) f(A)f(A)f(A) bounded, taking A 1 = c l c o f ( A ) A A 1 = c l c o f ( A ) A A_(1)=clcof(A)sube AA_{1}=c l c o f(A) \subseteq AA1=clcof(A)A and f : A 1 A 1 f : A 1 A 1 f:A_(1)rarrA_(1)f: A_{1} \rightarrow A_{1}f:A1A1.
Me nead also the following
Insuld 1. Let X X XXX be a normed space, C X C X C sube XC \subseteq XCX and f : C X f : C X f:C longrightarrow Xf: C \longrightarrow Xf:CX, such that ( I f ) ( C ) ( I f ) ( C ) (I-f)(C)(I-f)(C)(If)(C) is a closed sot. If there oxiats a sequonce of ㄱapsf n , C X , n 1 n , C X , n 1 n,C rarr X,n >= 1n, C \rightarrow X, n \geqslant 1n,CX,n1, each of them having e fixed point x n ( f n ( x n ) = x n ) , f n x n f n x n = x n , f n x_(n)(f_(n)(x_(n))=x_(n)),f_(n)x_{n} \left(f_{n}\left(x_{n}\right)=x_{n}\right), f_{n}xn(fn(xn)=xn),fn converging uniformly to f 1 f 1 f_(1)f_{1}f1 then f has also a fixed f has also a fixed  f_("has also a fixed ")f_{\text {has also a fixed }}fhas also a fixed  point.
Proof. Denote s , g n : C I , g = I f , g n = I f n , n 1 s , g n : C I , g = I f , g n = I f n , n 1 s,g_(n):C rarrI,g=I-f,g_(n)=I-f_(n),n >= 1\mathrm{s}, \mathrm{g}_{\mathrm{n}}: C \rightarrow \mathrm{I}, \mathrm{g}=I-f, \mathrm{~g}_{\mathrm{n}}=I-f_{\mathrm{n}}, n \geq 1s,gn:CI,g=If, gn=Ifn,n1. Fach I n I n I_(n)I_{n}In having a fixed point, it follows that each g n g n g_(n)g_{n}gn has a zero, heace o g n ( d ) o g n ( d ) o ing_(n)(d)o \in g_{n}(d)ogn(d). Because f n n f f n n f f_(n)rarr"n"ff_{n} \xrightarrow{n} ffnnf uniforaly; g n n g g n n g g_(n)rarr"n"gg_{n} \xrightarrow{n} ggnng uniformly.
Int ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 be arbitrarily chosen; Irom the uniform convergenció of g n g n g_(n)g_{n}gn to g g ggg one obtains g 6 1 g 6 1 g_(6) >= 1g_{6} \geqslant 1g61 such that
g x ( x ) g ( x ) < ε g x ( x ) g ( x ) < ε ||g_(x)(x)-g(x)|| < epsi\left\|g_{x}(x)-g(x)\right\|<\varepsilongx(x)g(x)<ε for each n n ε n n ε n >= n_(epsi)n \geqslant n_{\varepsilon}nnε and x x xxx in C C CCC.
It follows that for each n n E n n E n >= n_(E)n \geqslant n_{E}nnE we have
E n ( C ) E ( C ) + B ( 0 , E ) E n ( C ) E ( C ) + B ( 0 , E ) E_(n)(C)sube E(C)+B(0,E)E_{n}(C) \subseteq E(C)+B(0, E)En(C)E(C)+B(0,E).
Therafore 0 E ( C ) + B ( 0 , ε ) 0 E ( C ) + B ( 0 , ε ) 0in E(C)+B(0,epsi)0 \in E(C)+B(0, \varepsilon)0E(C)+B(0,ε) for each ε > 0 ε > 0 epsi > 0\varepsilon>0ε>0 and 0 0 0in0 \in0 cl g ( C ) g ( C ) g(C)g(C)g(C). = g ( C ) = g ( C ) =g(C)=g(C)=g(C). This means'that there exists x C x C x in Cx \in CxC such that f ( x ) = x ˙ f ( x ) = x ˙ f(x)=x^(˙)f(x)=\dot{x}f(x)=x˙.
Now we can prove the following
THEOREM 2. Let X X XXX be a Banach spēce, A X A X A sube XA \subseteq XAX a nonvoid closéd convex set; f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX and r : X A r : X A r:X rarr Ar: X \rightarrow Ar:XA such that F = F = F=F=F= rof : A A : A A :A rarr A: A \rightarrow A:AA is a continuous 1-set-contractive map having P ( A ) P ( A ) P(A)P(A)P(A) bounded and ( I f ) ( A ) ( I f ) ( A ) (I-f)(A)(I-f)(A)(If)(A) a closed set. Then Fix rof !in O/\notin \varnothing.
Proof. Let t ( 0 , 1 ) , x 0 A t ( 0 , 1 ) , x 0 A t in(0,1),x_(0)in At \in(0,1), x_{0} \in At(0,1),x0A and F t = t F + ( 1 t ) x 0 F t = t F + ( 1 t ) x 0 F_(t)=tF+(1-t)x_(0)F_{t}=t F+(1-t) x_{0}Ft=tF+(1t)x0. We show that F t F t F_(t)F_{t}Ft is t t ttt-set contractive.
Let B A B A B sube AB \subseteq ABA a bounded subset ; then
a ( F t ( B ) ) = a ( t P ( B ) + ( I t ) x 0 ) a ( t P ( B ) ) = t a ( P ( B ) ) t a ( B ) a F t ( B ) = a t P ( B ) + ( I t ) x 0 a ( t P ( B ) ) = t a ( P ( B ) ) t a ( B ) a(F_(t)(B))=a(tP(B)+(I-t)x_(0)) <= a(tP(B))=ta(P(B)) <= ta(B)a\left(F_{t}(B)\right)=a\left(t P(B)+(I-t) x_{0}\right) \leqslant a(t P(B))=t a(P(B)) \leqslant t a(B)a(Ft(B))=a(tP(B)+(It)x0)a(tP(B))=ta(P(B))ta(B).
Applying Darbo's theorem, each F t F t F_(t)F_{t}Ft has a fixed point x t x t x_(t)x_{t}xt. Considering t n 1 , t n < 1 t n 1 , t n < 1 t_(n)rarr1,t_(n) < 1t_{n} \rightarrow 1, t_{n}<1tn1,tn<1 we obtain for each x x xxx in A A AAA
F t n ( x ) F ( x ) = ( 1 t n ) F ( x ) x 0 F t n ( x ) F ( x ) = 1 t n F ( x ) x 0 ||F_(t_(n))(x)-F(x)||=(1-t_(n))||F(x)-x_(0)|| <=\left\|F_{t_{n}}(x)-F(x)\right\|=\left(1-t_{n}\right)\left\|F(x)-x_{0}\right\| \leqslantFtn(x)F(x)=(1tn)F(x)x0
( 1 t n ) d ( x 0 , F ( A ) ) t n 1 0 , 1 t n d x 0 , F ( A ) t n 1 0 , <= (1-t_(n))d(x_(0)^('),F(A))rarr"t_(n)rarr1"0,\leqslant\left(1-t_{n}\right) d\left(x_{0}^{\prime}, F(A)\right) \xrightarrow{t_{n} \rightarrow 1} 0,(1tn)d(x0,F(A))tn10,.
bence F t n F F t n F F_(t_(n))longrightarrow F\mathrm{F}_{\mathrm{t}_{\mathrm{n}}} \longrightarrow FFtnF uniformly on A .
Now Lema 1 applies and Fix F F F!in O/F \notin \varnothingF.
In the above theorem, instead of ( I F ) ( Λ ) ( I F ) ( Λ ) (I-F)(Lambda)(I-F)(\Lambda)(IF)(Λ) to be closod, one could require ( I F I F I-FI-FIF ) (cl co F ( A ) F ( A ) F(A)F(A)F(A) ) to be closed to X X XXX, considering the restriction of F F FFF on el co F ( A ) F ( A ) F(A)F(A)F(A), whose range is also in cl co r ( A ) r ( A ) vec(r)(A)\vec{r}(A)r(A).
In the terms of F F FFF, Theorem 2 is exactely Lemma 1 in / 6 / / 6 / //6/// 6 //6/, given there without proof.
4 natural example of a map x : X A x : X A x:X rarr Ax: X \rightarrow Ax:XA is the meteric projection, which is well-defined if for mample x x xxx is aniformly convex.In thls case we obtain obviously
COROLTARY 1.Let X X XXX be a prifornaly convex Bagach Boach i X i X i sube Xi \subseteq XiX ㅡ nonvoid closed convex fat, f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX ang P = F , t x A P = F , t x A P=F,tx rarr AP=F, t x \rightarrow AP=F,txA the metric projection.If P = p f : A A P = p f : A A P=p@f:A rarr AP=p \circ f: A \rightarrow AP=pf:AA as a continuigs 1-getcog- tructive men with F ( Λ ) F ( Λ ) F(Lambda)F(\Lambda)F(Λ) bounded and(I.F )( A A AAA )cloged get,then Rix pof 0 0 !=0\neq 00
The conclusion means axactely that there oxists x x xxx in a ach that par ( x ) = x , 1 4 , 0.1 f ( x ) = d ( f ( x ) , 1 ) ( x ) = x , 1 4 , 0.1 f ( x ) = d ( f ( x ) , 1 ) (x)=x,(1)/(4),0.1-f(x)=d(f(x),1)(x)=x, \frac{1}{4}, 0.1-f(x)=d(f(x), 1)(x)=x,14,0.1f(x)=d(f(x),1) this raspht appears in the well-icnomn theorem of X ¯ y X ¯ y bar(X)y\bar{X} yX¯y Fan(1969)gtyan for a namveld com- pact convex subset K K KKK of a normed space X X XXX and continuous map I I III : K K : K K :KlongrightarrowK: \mathrm{K} \longrightarrow \mathrm{K}:KK.
a nonvoid slosed convex set, f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX ig continuous 1 1 1-1-1 setchontrac- tive map.We suppose that althgr ( I p o f ) ( A ) ( I p o f ) ( A ) (I-pof)(A)(I-p o f)(A)(Ipof)(A) is closed gr( I I I-I-I -pof)(cl co pef(A))is closed in x x xxx, whers p = P A : x A p = P A : x A p=P_(A):x rarr Ap=P_{A}: x \rightarrow Ap=PA:xA is the metric profection.If f ( A ) f ( A ) f(A)f(A)f(A) is bounded,then there exists u in such that
u f ( u ) = d ( f ( u ) , Λ ) u f ( u ) = d ( f ( u ) , Λ ) ||u-f(u)||=d(f(u),Lambda)\|u-f(u)\|=d(f(u), \Lambda)uf(u)=d(f(u),Λ).
Proof.Because f , t X ˙ f , t X ˙ f,t rarrX^(˙)f, t \rightarrow \dot{X}f,tX˙ is continneus 1-set-contractive and i p : X A p : X A p:X rarr Ap: X \rightarrow Ap:XA is nonexpansive / 4 / / 4 / //4/// 4 //4/ ,it follows that F = p a r F = p a r F=parF=p a rF=par is a conti- nuous 1-sht-contractive map.The fact that f ( A ) f ( A ) f(A)f(A)f(A) is bourded implios F ( A ) F ( A ) F(A)F(A)F(A) boundad and Cerellary 1 applies.
It is obvieus that in Caroliary 2 ,ingtend of 1 ( 1 ) 1 ( 1 ) 1(1)1(1)1(1) to be bounded it is enough the require pof(A)to be boandad.
In the papar/4/there mew given many results which fallow from Corsllary 2,mong mich theorems of Isn,Singh and Hatison.
If in Theorein 1 we can choose r : X Δ r : X Δ r:X rarr Deltar: X \rightarrow \Deltar:XΔ to be a retract such that i is a retractible map with respect to r,we obtain a rixed polyt theoren for 1 1 ^(1){ }^{1}1
FHSOBJM 3 :If in the conditions in Theorem 1 , x : x 118 1 , x : x 118 1,x:x rarr1181, x: x \rightarrow 1181,x:x118 a Fetract and I : A I I : A I I:A longrightarrow II: A \longrightarrow II:AI ls retractible with respect to r r rrr ,then致和 f = 6 f = 6 f=6f=6f=6
Froof.From Theoren 1 it follows Fir rof g g !in g\notin gg and f f fff being retrac- tible with respect to r r rrr we have F i x f = F i x F i x f = F i x Fixf=FixF i x f=F i xFixf=Fix rof !in O/\notin \varnothing
comothary 3 (Theorem 5 in/6/).Let x x _ x_\underline{x}x be a Hilbert space, uarr\uparrow a nonvoid closed convex set, f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX a continuous 1-set-contrac- tive map.量e suppose that sither ( I p f ) ( A ) ( I p f ) ( A ) (I∼p@f)(A)(I \sim p \circ f)(\mathrm{A})(Ipf)(A) is closed in X or (I-pof)(cl co p-f(A))is closed in X X XXX ,where P = P A P = P A P=P_(A)P=P_{A}P=PA is the netric projection.If f ( A ) f ( A ) f(A)f(A)f(A) is bounded and f f fff satisfies one of the following conditions :
(1)For each x x xxx in A A AAA ,there is a number λ λ lambda\lambdaλ(real or complex,de- pending on whether the vector space x x xxx is real or complex)such that | λ | < 1 | λ | < 1 |lambda| < 1|\lambda|<1|λ|<1 and λ x + ( 1 λ ) f ( x ) Λ λ x + ( 1 λ ) f ( x ) Λ lambda x+(1-lambda)f(x)in Lambda\lambda x+(1-\lambda) f(x) \in \Lambdaλx+(1λ)f(x)Λ
(2)For each x x xxx in 1 with x r ( x ) x r ( x ) x!=r(x)x \neq r(x)xr(x) ,there exists y y yyy in I A ( x ) == { x + c ( z x ) : z A , c > 0 } I A ( x ) == { x + c ( z x ) : z A , c > 0 } I_(A)(x)=={x+c(z-x):z in A,c > 0}I_{A}(x)= =\{x+c(z-x): z \in A, c>0\}IA(x)=={x+c(zx):zA,c>0} such that.
H y f ( x ) < x f ( x ) H y f ( x ) < x f ( x ) Hy-f(x)|| < ||x-f(x)||H y-f(x)\|<\| x-f(x) \|Hyf(x)<xf(x).
(3) f f fff is weakly inward(i.e. f ( x ) f ( x ) f(x)inf(x) \inf(x) al I A ( x ) I A ( x ) I_(A)(x)I_{A}(x)IA(x) for each x x xxx in A).
(4)For each u in the boundary of 1 with u = p f ( u ) u = p f ( u ) u=p*f(u)u=p \cdot f(u)u=pf(u) ,u is a fixed point of 1 .
(5)For oach x x xxx in the boundary of A , f ( x ) y x y A , f ( x ) y x y A,||f(x)-y|| <= ||x-y||A,\|f(x)-y\| \leq\|x-y\|A,f(x)yxy for some y y yyy in A A AAA
Then I I III has a fixed point in A A AAA
Proof.Corollary 2 applies,so Pix pof & & &oo\& \infty& :Each of the five conditions implies(4) / 2 / / 2 / //2/// 2 //2/ ,which is in fact exactly Fix fof = = ===
This means that f : A X f : A X f:A rarr Xf: A \rightarrow Xf:AX is retractible with respect to p p ppp and applying Theoxam 3 one has Fix £ £ £!=O/£ \neq \varnothing£.
We mention that the condition of the retractibility . Fix pot == == === === Pix f f fff takes in Eilbert spaces the rollowing equivalent forms t t ttt
(i) For each in in the boundary of i i iii which is not a fixed point for f f fff, there exists y y yyy in A A AAA such that
Ro ( f ( u ) u , u y ) < o ( f ( u ) u , u y ) < o (f(u)-u,u-y) < o(f(u)-u, u-y)<o(f(u)u,uy)<o.
(ii) Ror each 4 in the boundary of 4 which is not a fixed point for f f fff, there exists y y yyy in A A AAA such that
y f ( u ) < u f ( u ) y f ( u ) < u f ( u ) ||y-f(u)|| < ||u-f(u)||\|y-f(u)\|<\|u-f(u)\|yf(u)<uf(u).
(iii) For aach u u uuu in the boundary of A A AAA which is not a fixed potnt for t t ttt,
lim t 0 t 1 t a ( ( 1 t ) u + t f ( u ) , A ˙ ) < f ( u ) u ! lim t 0 t 1 t a ( ( 1 t ) u + t f ( u ) , A ˙ ) < f ( u ) u ! lim_(t rarr0_(t))(1)/(t)a((1-t)u+tf(u),A^(˙)) < ||f(u)-u!\underset{t \rightarrow 0_{t}}{\lim } \frac{1}{t} a((1-t) u+t f(u), \dot{A})<\| f(u)-u!limt0t1ta((1t)u+tf(u),A˙)<f(u)u!.
The equivalence follows easily from the next lemme, which relies on the fact that in a llibert spiace for a closed conver set 1 and x x xxx in x x xxx one has p ( x ) = a p ( x ) = a p(x)=ap(x)=ap(x)=a iff Re ( x a , y a ) 0 ( x a , y a ) 0 (x-a,y-a) <= 0(x-a, y-a) \leq 0(xa,ya)0 for each EE\exists in A ( p = P A A p = P A A(p=P_(A):}A\left(p=P_{A}\right.A(p=PA being the metric projection).
Lisen 2. Let X X XXX be a Eilbert Brace, A X A X A sube XA \subseteq XAX a nomvoid closed convex set, a in A , x A , x A,xA, xA,x in X X XXX. The following assertions are equivalent : i c p ( x ) = 2 i c p ( x ) = 2 i^(c)p(x)=2i^{c} p(x)=2icp(x)=2, i.e. x a x y x a x y ||x-a|| <= ||x-y||\|x-a\| \leqslant\|x-y\|xaxy for aach y y yyy in.
2 0 lim t 3 1 1 t d ( ( 1 t ) a + t x , A ) = 2 0 lim t 3 1 1 t d ( ( 1 t ) a + t x , A ) = 2^(0)lim_(t rarr3)(1)/((1)/(t))d((1-t)a+tx,A)=2^{0} \underset{t \rightarrow 3}{\lim } \frac{1}{\frac{1}{t}} d((1-t) a+t x, A)=20limt311td((1t)a+tx,A)=
= lim t 0 , 1 τ d ( ( 1 t ) a + t x , A ) = = lim t 0 , 1 τ d ( ( 1 t ) a + t x , A ) = =lim_(t rarr0,)(1)/(tau)d((1-t)a+tx,A)==\lim _{t \rightarrow 0,} \frac{1}{\tau} d((1-t) a+t x, A)==limt0,1τd((1t)a+tx,A)=
= inf lat 0 1 t d ( ( 1 t ) a + t x , d ) = x a = inf lat 0 1 t d ( ( 1 t ) a + t x , d ) = x a =i n f_(lat0)(1)/(t)d((1-t)a+tx,d)=||x-a||=\inf _{\operatorname{lat} 0} \frac{1}{t} d((1-t) a+t x, d)=\|x-a\|=inflat01td((1t)a+tx,d)=xa.
3 2 min ini 1 t d ( ( 1 t ) a + σ x , A ) x i : 3 2 min ini  1 t d ( ( 1 t ) a + σ x , A ) x i : 3^(2)min_("ini ")(1)/(t)d((1-t)a+sigma x,A) >= ||x-i||:3^{2} \min _{\text {ini }} \frac{1}{t} d((1-t) a+\sigma x, A) \geqslant\|x-i\|:32minini 1td((1t)a+σx,A)xi:
2 2 =>2^(@)\Rightarrow 2^{\circ}2. Tree first equalities in 2 2 2^(@)2^{\circ}2.ase true because
the map ψ : 3 + { 0 } R + , ψ ( t ) = 1 t d ( a + t ( x a ) ψ : 3 + { 0 } R + , ψ ( t ) = 1 t d ( a + t ( x a ) psi:3_(+)\\{0}rarrR_(+),psi(t)=(1)/(t)d(a+t(x-a)\psi: 3_{+} \backslash\{0\} \rightarrow R_{+}, \psi(t)=\frac{1}{t} d(a+t(x-a)ψ:3+{0}R+,ψ(t)=1td(a+t(xa), i) is increaaine and
lim i t > 0 Ψ ( t ) = lim t > 0 Ψ ( t ) . Now inf i t > 0 i 2 ( t ) inf i 0 t I t d 2 ( t ( x a ) , A a ) = = ln 1 t > 0 d 2 ( x a , 1 t ( A a ) ) = inf t 1 d 2 ( x a , t ( d a ) ) = = ligf t × 4 inf y A 2 x a t y 2 = = inf y A 2 inr t 1 ( t 2 y 2 2 t Re ( x a , y ) + x a 2 ) . lim i t > 0 Ψ ( t ) = lim t > 0 Ψ ( t ) .  Now  inf i t > 0 i 2 ( t ) inf i 0 t I t d 2 ( t ( x a ) , A a ) = = ln 1 t > 0 d 2 x a , 1 t ( A a ) = inf t 1 d 2 ( x a , t ( d a ) ) = = ligf t × 4 inf y A 2 x a t y 2 = = inf y A 2 inr t 1 t 2 y 2 2 t Re ( x a , y ) + x a 2 . {:[lim_(i >= t > 0)Psi(t)=lim_(t > 0)Psi(t).],[" Now "i n f_({:[i >= t > 0],[i^(2)(t)]:})i n f_({:[i >= 0],[t]:})(I)/(t)d^(2)(t(x-a)","A-a)=],[=ln_(1 >= t > 0)d^(2)(x-a,(1)/(t)(A-a))],[=i n f_(t >= 1)d^(2)(x-a","t(d-a))=],[=ligf_(t xx4)i n f_(y in A-2)||x-a-ty||^(2)=],[=i n f_(y in A-2)inr_(t >= 1)(t^(2)||y||^(2)-2t Re(x-a,y)+||x-a||^(2)).]:}\begin{aligned} & \lim _{i \geq t>0} \Psi(t)=\lim _{t>0} \Psi(t) . \\ & \text { Now } \inf _{\substack{i \geq t>0 \\ i^{2}(t)}} \inf _{\substack{i \geq 0 \\ t}} \frac{I}{t} d^{2}(t(x-a), A-a)= \\ & =\ln _{1 \geq t>0} d^{2}\left(x-a, \frac{1}{t}(A-a)\right) \\ & =\inf _{t \geq 1} d^{2}(x-a, t(d-a))= \\ & =\operatorname{ligf}_{t \times 4} \inf _{y \in A-2}\|x-a-t y\|^{2}= \\ & =\inf _{y \in A-2} \operatorname{inr}_{t \geq 1}\left(t^{2}\|y\|^{2}-2 t \operatorname{Re}(x-a, y)+\|x-a\|^{2}\right) . \end{aligned}limit>0Ψ(t)=limt>0Ψ(t). Now infit>0i2(t)infi0tItd2(t(xa),Aa)==ln1t>0d2(xa,1t(Aa))=inft1d2(xa,t(da))==ligft×4infyA2xaty2==infyA2inrt1(t2y22tRe(xa,y)+xa2).
But A θ ( x a , y ) = R θ ( x a , y + a a ) 0 A θ ( x a , y ) = R θ ( x a , y + a a ) 0 A_(theta)(x-a,y)=R_(theta)(x-a,y+a-a) <= 0A_{\theta}(x-a, y)=R_{\theta}(x-a, y+a-a) \leq 0Aθ(xa,y)=Rθ(xa,y+aa)0, because y + a a y + a a y+a inay+a \in \mathcal{a}y+aa, y d ( x ) == a y d ( x ) == a yd(x)==ay d(x)= =\mathrm{a}yd(x)==a.
It follows that the map to be unimized is increasing on [ Re ( x a , y ) , + ) [ Re ( x a , y ) , + ) [Re(x-a,y),+oo)[\operatorname{Re}(x-a, y),+\infty)[Re(xa,y),+), hence also on [ 1 , + ) [ 1 , + ) [1,+oo)[1,+\infty)[1,+). The influua will be attained on t = 1 t = 1 t=1t=1t=1 and
inf 1 t > 0 ψ 2 ( t ) = int y A a x a y 2 = = inf y A x y 2 = x a 2 inf 1 t > 0 ψ 2 ( t ) = int y A a x a y 2 = = inf y A x y 2 = x a 2 {:[i n f_(1 >= t > 0)psi^(2)(t)=int_(y in A-a)||x-a-y||^(2)=],[=i n f_(y in A)||x-y||^(2)=||x-a||^(2)]:}\begin{aligned} \inf _{1 \geq t>0} \psi^{2}(t) & =\operatorname{int}_{y \in A-a}\|x-a-y\|^{2}= \\ & =\inf _{y \in A}\|x-y\|^{2}=\|x-a\|^{2} \end{aligned}inf1t>0ψ2(t)=intyAaxay2==infyAxy2=xa2
and the implication is proved.
2 3 2 3 2^(@)Longrightarrow3^(@)2^{\circ} \Longrightarrow 3^{\circ}23 in obvious,
3 0 1 0 3 0 1 0 3^(0)=>1^(0)3^{0} \Rightarrow 1^{0}3010. Te have x a inf t 0 1 t ( ( 1 t ) a + t x , 1 ) x a inf t 0 1 t ( ( 1 t ) a + t x , 1 ) ||x-a|| <= i n f_(t rarr0)(1)/(t)((1-t)a+tx,1) <=\|x-a\| \leq \inf _{t \rightarrow 0} \frac{1}{t}((1-t) a+t x, 1) \leqxainft01t((1t)a+tx,1)
ψ ( 1 ) = d ( x , 1 ) x y ψ ( 1 ) = d ( x , 1 ) x y <= psi(1)=d(x,1) <= ||x-y||\leq \psi(1)=d(x, 1) \leq\|x-y\|ψ(1)=d(x,1)xy
for each J J JJJ in Λ Λ Lambda\LambdaΛ.
Remark. The equivalence in Inama 2 is also true if λ λ lambda\lambdaλ is a prenifibertian space and 1 a complete convex set.
The assertions (i) - (iii) are all equivalent to the condition (4) in Cogollary 3.
For (1) one uses the fact that pof(u) u u !in u\notin uu is equiralent to the axistance of y y yyy in A A AAA such that B o ( u f ( u ) , j u ) > 0 , u s i n g B o ( u f ( u ) , j u ) > 0 , u s i n g Bo(u-f(u),j-u) > 0,usingB o(u-f(u), j-u)>0, u s i n gBo(uf(u),ju)>0,using the characteriation of the metric projection memtloned before Lawia 2 was given.
For (ii) one applias fust the definition of p ( f ( a ) ) p ( f ( a ) ) p(f(a))p(f(a))p(f(a)) and obtains inde inequality in (ii).
For (iii) wa use the equivalence 1 3 1 3 1^(@)Longleftrightarrow3^(@)1^{\circ} \Longleftrightarrow 3^{\circ}13 which was proved in Leana 2.
So the ascertiona (i) - (iii) ure fust reformulations of the Iact that she map f : Λ X f : Λ X f:Lambda rarr Xf: \Lambda \rightarrow Xf:ΛX is retractible on A A AAA with respect to tiau retraction p.
The equivalence of (i) - (iii) was in fact proved in /9/, where (i) is called the Leray-Schauder condition, (ii) the BrowderPetryshy condition and (iii) the Cramer-Ray condition. Hare Te emphazised the rale of the properties of the metric projection in this equivalence.
We flnish the paper giving a mathod of approximation of fixed Folnts for maps with pol nonexpansive in liilbert spaces by a procedure sinilar to that in the proof of Theorem 1 .
THSOEN 4. Let X X XXX be a Hilbert space, A a nonvoid cloged convex subset of x , 1 ; A X x , 1 ; A X x,1;A rarr Xx, 1 ; A \rightarrow Xx,1;AX a nap retraction an A A AAA with resp. at to the petric projection such that F = F = F=F=F= pol : Λ Δ : Λ Δ :Lambda rarr Delta: \Lambda \rightarrow \Delta:ΛΔ is nonempansive and P ( 1 ) P ( 1 ) P(1)P(1)P(1) bounded.
Consider F k : Λ Λ , F k ( x ) = k F ( x ) + ( 1 k ) x 0 , 0 < k < 1 F k : Λ Λ , F k ( x ) = k F ( x ) + ( 1 k ) x 0 , 0 < k < 1 F_(k):Lambda rarr Lambda,F_(k)(x)=kF(x)+(1-k)x_(0),0 < k < 1F_{k}: \Lambda \rightarrow \Lambda, F_{k}(x)=k F(x)+(1-k) x_{0}, 0<k<1Fk:ΛΛ,Fk(x)=kF(x)+(1k)x0,0<k<1, k 1 , x 0 C k 1 , x 0 C k rarr1,x_(0)in Ck \rightarrow 1, x_{0} \in Ck1,x0C and x k x k x_(k)x_{k}xk, the fixed point of the contraction F k F k F_(k)F_{k}Fk.
Then x k k 1 J 0 x k k 1 J 0 x_(k)rarr"k rarr1"J_(0)x_{k} \xrightarrow{k \rightarrow 1} J_{0}xkk1J0, whore J 0 J 0 J_(0)J_{0}J0 is the fixed point of f f fff which closest to x 0 x 0 x_(0)x_{0}x0.

Proof.

The flxad point act Fix F F FFF is nonvoid; let J 0 J 0 J_(0)J_{0}J0 be the fixad point
of F F FFF mileh is closest to x 0 x 0 x_(0)x_{0}x0. For F F FFF one applies the approxiation rasult in / 8 / / 8 / //8/// 8 //8/; for k n n , k n ( 0 , 1 ) , n M k n n , k n ( 0 , 1 ) , n M k_(n)rarr"n",k_(n)in(0,1),n in Mk_{n} \xrightarrow{n}, k_{n} \in(0,1), n \in Mknn,kn(0,1),nM, one obtains firstly that { x k n } x k n {x_(k_(n))}\left\{x_{k_{n}}\right\}{xkn} ne N N NNN is a bounded scquence. Phan a subsequence of { x k n } n N x k n n N {x_(k_(n))}n in N\left\{x_{k_{n}}\right\} n \in N{xkn}nN will converge veakij to a paint x x xxx. Using the dealiclosedness of I-I one obtatns x = y 0 x = y 0 x=y_(0)x=y_{0}x=y0 and then the strong convorgenco or { x k n } n M x k n n M {x_(k_(n))}_(n in M)\left\{x_{k_{n}}\right\}_{n \in M}{xkn}nM to y 0 y 0 y_(0)y_{0}y0
But Pix P = P P = P P=PP=PP=P ix I I III and the theorer is proved.

REFZENCES

  1. M. C. Anisiu, Fixed points of retraotible nappings with respect to the netric projection, "Babes-Bolyal" Univ., Fac. of Nath. Phys., Preprint nr. ?, 1988, 67-96
  2. M.C.Antstu, V.Anisia, On some conditions for the existence of the fixad points in Hilbert spaces, "Babes-Bolyai" Univ., Fac. of With. Phys., Preprint nr. 6, 1989, 93-100
  3. R.F.Brown, Retraction methods in Nielsen fixed point theory, Pacific J. Math. 115 (1984), 277-298
  4. W. Gheney, A.II.Goldstein, Proximity maps for convex sets, Proc. Amer. Math. Soc. lo (1959), 448-450
  5. G.Darbo, Punti uniti in transformazioni a condominio noncompatto, Rend. Sen. Mat. Univ. Padova 24 (1955), 54-92
  6. 笙C.Lin, C.L. Yen, Applications of the proximity nap to fixed point thzoreas in Hilbert spaces, J. Approx. Theory 22 (1968), 141-148
  7. I.A.Bus, The fired point structures and the retraction mappings
    principla, "Baves-Bolyili" Univ., Fac. of Bath., Freprint ar. 3, 1986, 175-184
  8. S.P.Singh, B. Watson, On approximating fixed points, Proc. of Syap. in Pure Math., Vol. 45 (1986), Part 2, 393-395
    F. T. T. Filliaason, The Leray-Schauder condition is necessary for existence of fixed points, Vol. 886, Lecture Notes in Math., Springer-Verlag, Berin.
Institutul de Matenaticá C.P. 68 I400 Cluj-Hapoca ROMANIM  Institutul de Matenaticá   C.P.  68  I400 Cluj-Hapoca   ROMANIM  {:[" Institutul de Matenaticá "],[" C.P. "68],[" I400 Cluj-Hapoca "],[" ROMANIM "]:}\begin{aligned} & \text { Institutul de Matenaticá } \\ & \text { C.P. } 68 \\ & \text { I400 Cluj-Hapoca } \\ & \text { ROMANIM } \end{aligned} Institutul de Matenaticá  C.P. 68 I400 Cluj-Hapoca  ROMANIM 
This paper is in final form and no version of it is or will be Edbaitted for publication elsewhers.
1989

Related Posts