Harnack type inequalities and multiple solutions in cones of nonlinear problems


The paper presents an abstract theory regarding operator equations and systems in ordered Banach spaces. We obtain existence, localization and multiplicity results of positive solutions using Krasnosel’skii’s fixed point theorem in cones, and a Harnack type inequality. Concerning systems, the localization is established by the vector version of Krasnosel’skii’s theorem, where the compression-expansion conditions are expressed on components. The approach is sufficiently general to cover and unify a large number of results on particular classes of problems. It also can guide future research in this direction.


Diana-Raluca Herlea
Babeș-Bolyai University, Cluj-Napoca, Romania

Donal O’Regan
National University of Ireland, Galway, Ireland

Radu Precup
Babes-Bolyai University, Cluj-Napoca, Romania


Boundary value problem; positive solution; Harnack inequality; Krasnosel’skii’s fixed point theorem in cones; operator equation

Paper coordinates

D.-R. Herlea, D. O’Regan, R. Precup, Harnack type inequalities and multiple solutions in cones of nonlinear problems, Z. Anal. Anwend. 39 (2020), 151-170, https://doi.org/10.4171/zaa/1655



About this paper


Zeitschrift fur Analysis und ihre Anwendunge



Publisher Name

European Mathematical Society

Print ISSN


Online ISSN


google scholar link

1. Agarwal, R. P., Meehan, M., O’Regan, D. and Precup, R., Location of nonnegative solutions for differential equations on finite and semi-infinite intervals. Dynam. Systems Appl. 12 (2003), 323–332. MR2020470
2. Agarwal, R. P., O’Regan, D. and Wong, P. J. Y., Positive Solutions of Differential, Difference and Integral Equations. Dordrecht: Kluwer 1999. MR1680024
3. Bereanu, C. and Mawhin, J., Existence and multiplicity results for some nonlinear problems with singular φ-Laplacian. J. Diff. Equ. 243 (2007), 536–557. MR2371799
4. Cabada, A. and Cid, J. A., Existence of a non-zero fixed point for nondecreasing operators via Krasnoselskii’s fixed point theorem. Nonlinear Anal. 71 (2009), 2114–2118. MR2524422
5. Chinni, A., DiBella, B., Jebelean, P. and Precup, R., A four-point boundary value problem with singular φ-Laplacian. J. Fixed Point Theory Appl. 21 (2019), Art. 66, 16 pp. MR3948335
6. Frigon, M. and O’Regan, D., Fixed points of cone-compressing and coneextending operators in Frechet spaces. Bull. London Math. Soc. 35 (2003), 672–680.
7. Graef, J. R. and Yang, B., Upper and lower estimates of the positive solutions of a higher order boundary value problem. J. Appl. Math. Comput. 41 (2013), 321–337.
8. Granas, A. and Dugundji, J., Fixed Point Theory. New York: Springer 2003. MR1987179
9. Henderson, J. and Luca, R., Positive solutions for systems of second-order integral boundary value problems. Electron. J. Qual. Theory Diff. Equ. 2013, No. 70, 21 pp. MR3151717
10. Herlea, D.-R., Existence and localization of positive solutions to first order differential systems with nonlocal conditions. Studia Univ. Babe¸s-Bolyai Math. 59 (2014),
221–231. MR3229444
11. Herlea, D.-R., Existence, localization and multiplicity of positive solutions for the Dirichlet BVP with φ-Laplacian. Fixed Point Theory 18 (2017), 237–246. MR3675538
12. Herlea, D.-R., Positive solutions for second-order boundary-value problems with φ-Laplacian. Electron. J. Diff. Equ. 2016, No. 51, 8 pp. MR3466522
13. Herlea, D.-R. and Precup, R., Existence, localization and multiplicity of positive solutions to φ-Laplace equations and systems. Taiwanese J. Math. 20 (2016), 77–89. MR3462868
14. Infante, G. and Minhos, F., Nontrivial solutions of systems of Hammerstein integral equations with first derivative dependence. Mediterr. J. Math. 14 (2017), Art. 242, 18 pp. MR3735472
15. Krasnosel’ski˘ı, M. A., Positive Solutions of Operator Equations. Groningen: Noordhoff 1964.
16. Kwong, M. K., On Krasnoselskii’s cone fixed point theorem. Fixed Point Theory Appl. 2008, Art. ID 164537, 18 pp. MR2395322
17. Lan, K. Q., Multiple positive solutions of Hammerstein integral equations and applications to periodic boundary value problems. Appl. Math. Comput. 154 (2004), 531–542. MR2111389
18. Leggett, R. W. and Williams, L. R., Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 28 (1979), 673–688. MR0542951
19. Liu, B. and Zhang, J., The existence of positive solutions for some nonlinear equation systems. J. Math. Anal. Appl. 324 (2006), 970–981. MR2265094
20. Meehan, M. and O’Regan, D., Multiple nonnegative solutions of nonlinear integral equations on compact and semi-infinite intervals. Appl. Anal. 74 (2000), 413–427. MR1757547
21. O’Regan, D. and Precup, R., Theorems of Leray–Schauder Type and Applications. Amsterdam: Gordon and Breach 2001. MR1937722
22. O’Regan, D. and Precup, R., Positive solutions of nonlinear systems with pLaplacian on finite and semi-infinite intervals. Positivity 11 (2007), 537–548. MR2336216
23. Precup, R., A vector version of Krasnosel’ski˘ı’s fixed point theorem in cones and positive periodic solutions on nonlinear systems. J. Fixed Point Theory Appl. 2 (2007), 141–151. MR2336504
24. Precup, R., Componentwise compression-expansion conditions for systems of nonlinear operator equations and applications. In: Mathematical Models in Engineering,
Biology and Medicine (Proceedinds Santiago de Compostela (Spain) 2008; eds.: A. Cabada et al.). AIP Conf. Proc. 1124, Melville: Amer. Inst. Phys. 2009, pp. 284–293. MR2657155
25. Precup, R., Abstract weak Harnack inequality, multiple fixed points and p-Laplace equations. J. Fixed Point Theory Appl. 12 (2012), 193–206. MR3034860
26. Precup, R., Moser–Harnack inequality, Krasnosel’ski˘ı type fixed point theorems in cones and elliptic problems. Topol. Methods Nonlinear Anal. 40 (2012), 301–313. MR3074467
27. Precup, R., Pucci, P. and Varga, C., Energy-based localization and multiplicity of radially symmetric states for the stationary p-Laplace diffusion. Complex Var. Elliptic Equ. (2019), DOI:10.1080/17476933.2019.1574774 MR4095551
28. Precup, R. and Rodriguez-Lopez, J., Positive solutions for discontinuous problems with applications to φ-Laplacian equations. J. Fixed Point Theor. Appl. 20 (2018), Art. 156, 17 pp. MR3868781
29. Precup, R. and Rodriguez-Lopez, J., Multiplicity results for operator systems via fixed point index. Results Math. 74 (2019)(1), Art. 25, 14 pp. MR3897520
30. Torres, P. J., Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem. J. Diff. Equ. 190 (2003), 643–662. MR1970045
31. Wang, H., Positive periodic solutions of singular systems of first order ordinary differential equations. Appl. Math. Comput. 218 (2011), 1605–1610. MR2831383
32. Webb, J. R. L., Solutions of nonlinear equations in cones and positive linear operators. J. Lond. Math. Soc. 82 (2010), 420–436. MR2725047
33. Yang, B., Positive solutions of a boundary value problem for the beam equation. In: Dynamic Systems and Applications. Vol. 7 (Proceedings Atlanta (GA) 2015; eds.:G. S. Ladde et al.). Atlanta: Dynamic Publ. 2016, pp. 233–238. MR3645014
34. Zhang, G. and Sun, J., A generalization of cone expansion and compression fixed point theorem and applications. Nonlinear Anal. 67 (2007), 579–586. MR2317189


Related Posts