[1] P.N. Brown, A theoretical comparison of the Arnoldi and GMRES algorithms, SIAM, J. Sci. Stat. Comput., 12 (1991) no. 1, pp. 58–78.
[2] P.N. Brown and H.F. Walker, GMRES on (nearly) singular systems, SIAM J. Matrix Anal. Appl., 18 (1997) no. 1, pp. 37–51.
[3] E. Catinas, A note on inexact secant methods, Rev. Anal. Numer. Theor. Approx., 25 (1996) nos. 1–2, pp. 33–41.
[4] E. Catinas, Newton and Newton-Krylov methods for solving nonlinear systems in Rn, Ph.D. Thesis, Cluj-Napoca, Romania, (to be defended).
[5] E. Catinas, Inexact perturbed Newton methods and some applications for a class of Krylov solvers, J. Optim. Theory Appl., submitted.
[6] R.S. Dembo, S.C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982) no. 2, pp. 400–408.
[7] J.E. Dennis, Jr. and J.J. More, A characterization of superlinear convergence and its application to quasi-Newton methods, Math. Comput., 28 (1974) no. 126, pp. 549–560.
[8] J.E. Dennis, Jr. and J.J. More, Quasi-Newton methods, motivation and theory, SIAM Review, 19 (1977) no. 1, pp. 46–89.
[9] J.E. Dennis, Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall Series in Computational Mathematics, Englewood Cliffs, NJ, 1983.
[10] S.C. Eisenstat and H.F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17 (1996) no.1, pp. 16–32.
[11] E.M. Kasenally, GMBACK: a generalised minimum backward error algorithm for nonsymmetric linear systems, SIAM J. Sci. Comput., 16 (1995) no. 3, pp. 698–719.
[12] E.M. Kasenally and V. Simoncini, Analysis of a minimum perturbation algorithm for nonsymmetric linear systems, SIAM J. Numer. Anal, 34 (1997) no. 1, pp. 48–66. 132
[13] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
[14] H.J. Martinez, Z. Parada and R.A. Tapia, On the characterization of Q-superlinear convergence of quasi-Newton interior-point methods for nonlinear programming, Bol.Soc. Mat. Mexicana, 1 (1995) no. 3, pp. 137–148.
[15] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970.
[16] I. Pavaloiu, Introduction in the Approximation of the Solutions of Equations Theory, Ed. Dacia, Cluj-Napoca, 1976 (in Romanian).
[17] F.A. Potra and V. Ptak, Nondiscrete Induction and Iterative Processes, Pitman, London, 1984.
[18] F.A. Potra, On Q-order and R-order of convergence, J. Optim. Theory Appl., 63 (1989) no. 3, pp. 415–431.
[19] W.C. Rheinboldt, Methods for Solving Systems of Nonlinear Equations, SIAM, Philadelphia, 1996.
[20] Y. Saad, Krylov subspace methods for solving large unsymmetric linear systems, Math.Comp., 37 (1981) no. 155, pp. 105–126.
[21] Y. Saad, Iterative Methods for Sparse Linear Systems, PWS Pub. Co., Boston, 1996.
[22] Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986) no. 3, pp.856–869.
[23] G.W. Stewart and J.-G. Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
[24] H.F. Walker, An approach to continuation using Krylov subspace methods, Research Report 1/97/89, Dept. of Math., Utah State University, submitted to Computational Science in the 21st Century.