## Abstract

GMBACK is a Krylov solver for linear systems in \(\mathbb{R}^n\).

We analyze here the high convergence orders (superlinear convergence) of the Newton-GMBACK methods, which can be characterized applying three different existing results.

In this note we show by some direct calculations that these characterizations are equivalent.

## Authors

Emil Cătinaş

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

## Keywords

nonlinear system of equations in Rn; inexact Newton method; Krylov methods; linear systems of equation in Rn; residual; local convergence; superlinear convergence.

## Cite this paper as:

E. Cătinaş, *On the high convergence orders of the Newton-GMBACK methods*, Rev. Anal. Numér. Théor. Approx., 28 (1999) no. 2, pp. 125-132.

Scanned paper.

Latex-pdf version of the paper.

## About this paper

##### Publisher Name

##### Paper on the journal website

##### Print ISSN

1222-9024

##### Online ISSN

2457-8126

##### MR

?

##### ZBL

?

## Google Scholar citations

[1] P.N. Brown, *A theoretical comparison of the Arnoldi and GMRES algorithms*, SIAM, J. Sci. Stat. Comput., 12 (1991) no. 1, pp. 58–78.

[2] P.N. Brown and H.F. Walker, *GMRES on (nearly) singular systems*, SIAM J. Matrix Anal. Appl., 18 (1997) no. 1, pp. 37–51.

[3] E. Catinas, *A note on inexact secant methods,* Rev. Anal. Numer. Theor. Approx., 25 (1996) nos. 1–2, pp. 33–41.

[4] E. Catinas, *Newton and Newton-Krylov methods for solving nonlinear systems in **R**n*, Ph.D. Thesis, Cluj-Napoca, Romania, (to be defended).

[5] E. Catinas, *Inexact perturbed Newton methods and some applications for a class of Krylov solvers*, J. Optim. Theory Appl., submitted.

[6] R.S. Dembo, S.C. Eisenstat, and T. Steihaug, *Inexact Newton methods*, SIAM J. Numer. Anal., 19 (1982) no. 2, pp. 400–408.

[7] J.E. Dennis, Jr. and J.J. More, *A characterization* of superlinear convergence and its application to quasi-Newton methods, Math. Comput., 28 (1974) no. 126, pp. 549–560.

[8] J.E. Dennis, Jr. and J.J. More, *Quasi-Newton methods, motivation and theory*, SIAM Review, 19 (1977) no. 1, pp. 46–89.

[9] J.E. Dennis, Jr. and R.B. Schnabel, *Numerical Methods for Unconstrained Optimization and Nonlinear Equations,* Prentice-Hall Series in Computational Mathematics, Englewood Cliffs, NJ, 1983.

[10] S.C. Eisenstat and H.F. Walker, *Choosing the forcing terms in an inexact Newton method*, SIAM J. Sci. Comput., 17 (1996) no.1, pp. 16–32.

[11] E.M. Kasenally, *GMBACK: a generalised minimum backward error algorithm for nonsymmetric linear systems*, SIAM J. Sci. Comput., 16 (1995) no. 3, pp. 698–719.

[12] E.M. Kasenally and V. Simoncini, *Analysis of a minimum perturbation algorithm **for nonsymmetric linear systems*, SIAM J. Numer. Anal, 34 (1997) no. 1, pp. 48–66. 132

[13] C.T. Kelley, *Iterative Methods for Linear and Nonlinear Equations*, SIAM, Philadelphia, 1995.

[14] H.J. Martinez, Z. Parada and R.A. Tapia, *On the characterization of Q-superlinear convergence of quasi-Newton interior-point methods for nonlinear programming*, Bol.Soc. Mat. Mexicana, 1 (1995) no. 3, pp. 137–148.

[15] J.M. Ortega and W.C. Rheinboldt, *Iterative Solution of Nonlinear Equations in **Several Variables*, Academic Press, New York, 1970.

[16] I. Pavaloiu, *Introduction in the Approximation of the Solutions of Equations Theory*, Ed. Dacia, Cluj-Napoca, 1976 (in Romanian).

[17] F.A. Potra and V. Ptak, *Nondiscrete Induction and Iterative Processes*, Pitman, London, 1984.

[18] F.A. Potra, *On Q-order and R-order of convergence*, J. Optim. Theory Appl., 63 (1989) no. 3, pp. 415–431.

[19] W.C. Rheinboldt, *Methods for Solving Systems of Nonlinear Equations*, SIAM, Philadelphia, 1996.

[20] Y. Saad, *Krylov subspace methods for solving large unsymmetric linear systems*, Math.Comp., 37 (1981) no. 155, pp. 105–126.

[21] Y. Saad, *Iterative Methods for Sparse Linear Systems*, PWS Pub. Co., Boston, 1996.

[22] Y. Saad and M.H. Schultz, *GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems*, SIAM J. Sci. Stat. Comput., 7 (1986) no. 3, pp.856–869.

[23] G.W. Stewart and J.-G. Sun, *Matrix Perturbation Theory*, Academic Press, New York, 1990.

[24] H.F. Walker, *An approach to continuation using Krylov subspace methods*, Research Report 1/97/89, Dept. of Math., Utah State University, submitted to Computational Science in the 21st Century.