## Abstract

In this note we consider the chord (secant) method and the Steffensen method for solving polynomial operators of degree 2 on Banach spaces, \(F:X\rightarrow Y\).

The convergence conditions in this case are simplified, as the divided difference of order 3 is the null trilinear operator.

As particular cases, we study the eigenproblem for quadratic matrices and integral equations of Volterra type.

We obtain semilocal convergence results, which show the r-convergence orders of the iterates.

## Authors

Emil **Cătinaş**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

Ion **Păvăloiu**

(Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy)

## Keywords

chord/secant method; Steffensen method; polynomial operator equation of degree 2 on Banach spaces; divided differences; eigenproblem for quadratic matrices; integral equations of Volterra type; semilocal convergence; *r*-convergence order.

## Cite this paper as:

E. Cătinaş, I. Păvăloiu, *On some interpolatory iterative methods for the second degree polynomial operators (I)*, Rev. Anal. Numér. Théor. Approx., **27** (1998) no. 1, pp. 33-45.

Scanned paper (soon).

Latex version of the paper (soon).

## About this paper

##### Publisher Name

Editions de l’Academie Roumaine

##### Article on the journal website

##### Print ISSN

1222-9024

##### Online ISSN

2457-8126

##### MR

?

##### ZBL

?

## Google Scholar citations

## References

## Paper in html format

## References

[1] M. P. Anselone and ‘.L. Rall, *The solution of characteristic value-vector problems by Newton method*, Numer. Math. ll (1968), pp. 38-45.

[2] I.K. Argyros, *Quadratic equations and applications to Chandrasekhar’s and related equations*, Bull. Austral. Math. Soc. 38 (1988), pp. 275-292.

[3] E. Cătinaș and I. Păvăloiu, *On the Chebyshev method for approximating the eigenvalues of linear operators*, Rev. Anal. Numer. Theor. Approx., 25, 1-2 (1996), pp. 43-56.

post

[4] E. Cătinaș and I. Păvăloiu, *On a Chebyshev-type method for approximating the solutions of polynomial operator equations of degree 2*, Proceedings on International conference on Approximation and Optimization, Cluj-Napoca, July 29 – August 1, 1996, Vol. 1, pp.219-226.

[5] F. Chatelin, *Valeurs propres de matrices*, Mason, Paris-Milan-Barcelone-Mexico, 1988.

[6] P. G. Ciarlet, *Introduction a l’analyse numerique matricielle et a l’optimisation*, Mason, Paris-Milan Barcelone Mexico, 1990.

[7] L. Collatz, *Functionalanalysis und Numerische Mathematik*, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1964.

[8] A. Diaconu, *On the convergence of an iterative method of Chebyshev type*, Rev. Anal. Numer. Theor. Approx., 24 (I995) 1-2, pp. 91-102.

paper on the journal website

[9] A. Diaconu and I. Păvăloiu, *Sur quelques methodes iteratives pour la resolution des equations operationnelles*, Rev. Anal. Numer. Theor. Approx., 1 (1972) 1, pp. 45-61.

post

[10] V.S. Kartîșov and F. L. Iuhno, *O nekotorîh Modifikațiah Metoda Niutona dlea Resenia Nelineinoi spektralnoi Yadaci*, J. Vîcisl. matem. i matem. fiz. 33, 0 (1973), pp. 1403-1409.

[11] I. Lazăr, *On a Newton-type method*, Rev. Anal. Numer. Theor. Aprox., 23, 2 (1994), pp. 167-174.

paper on the journal website

[12] J. M. Ortega and W. C. Rheinboldt, *Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York. 1970.

[13] I. Păvăloiu, *Sur les procedes iteratifs a un ordre eleve de convergenc*e, Mathematica (Cluj) 12, (35), 2 (1970) pp. 309-324.

post

[14] I. Păvăloiu, *Introduction in the Approximation Theory for the solutions of Equations*, Ed. Dacia, Cluj-Napoca, I986 (in Romanian).

post

[15] I. Păvăloiu, *Observations concerning some approximation methods for the solutions of operator equations*, Rev. Anal. Numer. Theor. Approx. 23, 2 (1994), pp.185-196.

post

[16] I. Păvăloiu, *Approximation of the root of equations by Aitken-Steffensen-type monotonic sequences*, Calcolo, 32, 1-2 January-June, 1995, pp. 69-82.

CrossRef (DOI), post

[17] R. A. Tapia and L. D. Whitley, *The projected Newton method has order 1+√2 for the suymmetric eigenvalue problem*, SIAM J. Numer. Anal. 25, 6(l988), pp. 1316-1382.

[18] F.J. Traub, *Iterative Methods for the Solution of Equations*, Prentice-Hall Inc., Englewood Clilfs, N. J., 1964.

[l9] S. Ul’m, *On the iterative method with simultaneous approximation of the inverse of the operator*, Izv. Acad. Nauk. Estonskoi S.S.R. 16,4 (1967), pp. 403-411.

[20] T. Yamamoto, *Error bounds for computed eigenvalues and eigenvectors*, Numer. Math.34, (1980),pp. 189-199.