On a D.V. Ionescu’s problem for functional-differential equations

Abstract


The purpose of this paper is to study a generalization of a D.V. Ionescu’s problem. Existence, uniqueness and data dependence (monotony, continuity, differentiability with respect to parameter) results of solution for the Cauchy problem are obtained using weakly Picard operator theory

Authors

Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis Romanian Academy Cluj-Napoca, Romania

Veronica Ilea
Department of Applied Mathematics Babes-Bolyai University Cluj-Napoca, Romania

Keywords

Picard operator; weakly Picard operators,  polylocal problem; fixed points; data dependence.

Paper coordinates

V.Ilea, D.Otrocol, On a D.V. Ionescu’s problem for functional-differential equations, Fixed Point Theory, 10 (2009) no. 1, pp. 125-140.

PDF

About this paper

Journal

Fixed Point Theory

Publisher Name

House of the Book of Science Cluj-Napoca

DOI
Print ISSN

1583-5022

Online ISSN

2066-9208

google scholar link

[1] O. Arama, Contributions to the study of polylocal problems relative to differential equations, Ph.D. Thesis (in Romanian), Cluj, 1965.
[2] D.V. Ionescu, Quelques theorems d’existence des int´egrales des systemes d’equations differentielles, C.R. de l’Acad. Sci. Paris, 186(1929), 1262-1263.
[3] Ph. Hartman, A. Wintner, On an oscillation criterion of de la Vallee Poussin, Quaterlyof Applied Mathematics, 13(1955), no. 3, 330-332
[4] V. Mure¸san, Differential equation with linear modification of arguments, Transilvania Press, Cluj-Napoca, 1997.
[5] A.I. Perov, A.V. Kibenko, On a general method to study boundary value problems, Iz. Akad. Nauk., 30(1966), 249-264.
[6] A. Petru¸sel, I.A. Rus, Fixed point theorems in L-spaces, Proc. Amer. Math. Soc., 134(2006), 411-418.
[7] A. Petru¸sel, I.A. Rus, Mathematical contributions of Professor D.V. Ionescu, Notices from the ISMS, January, 2008, 1-11.
[8] T. Popoviciu, Sur quelques proprietes des fonctions d’une ou deux variables reelles, Mathematica (Cluj), 8(1934), 1-86.
[9] D. Ripianu, On Vall´ee Poussin inequality in the case of second order differential equations (in Romanian), St. Cerc. Mat. (Cluj), 8(1963), 123-150.
[10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), no.1, 191-219.
[11] I.A. Rus, Functional differential equations of mixed type, via weakly Picard operators, Sem. on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.
[12] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, ClujNapoca, 2001.
[13] I.A. Rus, Weakly Picard operators and applications, Sem. on Fixed Point Theory, ClujNapoca, 2(2001), 41-58.
[14] I.A. Rus, A. Petru¸sel, M. Serban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
[15] Ch.J. de la Vallee Poussin, Sur l’equation differentialle du second ordre. Determination d’une integrale par deux valeurs assignee. Extension aux equations d’ordre n, J. Math. Pures Appl., 8(1929), 125-144.

Paper (preprint) in HTML form

ON A D.V. IONESCU’S PROBLEM FOR FUNCTIONAL-DIFFERENTIAL EQUATIONS

VERONICA ILEA 1 AND DIANA OTROCOL 2
1 Department of Applied Mathematics
Babeş-Bolyai University
Cluj-Napoca, Romania
E-mail: vdarzu@math.ubbcluj.ro
2 Tiberiu Popoviciu Institute of Numerical Analysis Romanian Academy Cluj-Napoca, Romania
E-mail: dotrocol@ictp.acad.ro
Abstract

The purpose of this paper is to study a generalization of a D.V. Ionescu’s problem. Existence, uniqueness and data dependence (monotony, continuity, differentiability with respect to parameter) results of solution for the Cauchy problem are obtained using weakly Picard operator theory.

Key Words and Phrases: Picard operator, weakly Picard operators, polylocal problem, fixed points, data dependence.
2000 Mathematics Subject Classification: 47H10, 47N20, 34K07.

1. Introduction

We consider the system

x(t)=f(t,x(t),x(ω(t))),t[a,b]x^{\prime}(t)=f(t,x(t),x(\omega(t))),t\in[a,b] (1.1)

where

x:=(x1,x2,,xm),x(ω):=(x1(ω1),x2(ω2),,xm(ωm)),f:=(f1,f2,,fm)\begin{gathered}x:=\left(x_{1},x_{2},\ldots,x_{m}\right),\quad x(\omega):=\left(x_{1}\left(\omega_{1}\right),x_{2}\left(\omega_{2}\right),\ldots,x_{m}\left(\omega_{m}\right)\right),\\ f:=\left(f_{1},f_{2},\ldots,f_{m}\right)\end{gathered}

with initial conditions

{x1(a)=0x2(t2)=x1(t2)xm1(tm1)=xm2(tm1)xm(b)=0\left\{\begin{array}[]{l}x_{1}(a)=0\\ x_{2}\left(t_{2}\right)=x_{1}\left(t_{2}\right)\\ \cdots\\ x_{m-1}\left(t_{m-1}\right)=x_{m-2}\left(t_{m-1}\right)\\ x_{m}(b)=0\end{array}\right.

This kind of problems has been the subject of many works, from which we quote here first of all Ch.J. de la Vallèe Poussin’s memorial [15]. From the research upon the polylocal problem in relation with differential equations, research more related to the present approach, we mention the following: improved formulation of Ch.J. de la Vallèe Poussin’s theorem regarding second order differential equations have been obtained by Ph . Hartman and A. Wintner [3] and later by D. Ripianu [9], evaluations of differentiable functions with applications on the study of the polylocal problem have been provided by O . Arama [1], the connection between the study of the polylocal problem and the theory of superior order convex functions has been provided by T. Popoviciu, in the case of linear systems of functions [8].

We suppose that:
(C1)a=t1<t2<<tm1<tm=b;\left(\mathrm{C}_{1}\right)a=t_{1}<t_{2}<\ldots<t_{m-1}<t_{m}=b;
(C2)fC([a,b]×2m,m),ωiC([a,b],[a,b]),i=1,m¯\left(\mathrm{C}_{2}\right)f\in C\left([a,b]\times\mathbb{R}^{2m},\mathbb{R}^{m}\right),\omega_{i}\in C([a,b],[a,b]),i=\overline{1,m};
(C3)\left(\mathrm{C}_{3}\right) there exists Si1,,Si,2mMm,2m(+)S_{i1},\ldots,S_{i,2m}\in M_{m,2m}\left(\mathbb{R}_{+}\right)such that
|fi(t,u1,,u2m)fi(t,v1,,v2m)|Si1|u1v1|++Si,2m|u2mv2m|\left|f_{i}\left(t,u_{1},\ldots,u_{2m}\right)-f_{i}\left(t,v_{1},\ldots,v_{2m}\right)\right|\leq S_{i1}\left|u_{1}-v_{1}\right|+\ldots+S_{i,2m}\left|u_{2m}-v_{2m}\right| for all t[a,b],uj,vj2m,i=1,m¯t\in[a,b],u_{j},v_{j}\in\mathbb{R}^{2m},i=\overline{1,m}.

We consider the problem

x(t)=g(t),t[a,b]x^{\prime}(t)=g(t),t\in[a,b] (1.3)

with the conditions (1.2), where g:[a,b]m,g:=(g1,,gm)g:[a,b]\rightarrow\mathbb{R}^{m},g:=\left(g_{1},\ldots,g_{m}\right). The unique solution of this problem has the form

x(t)=ab(Kij)nn(t,s)g(s)𝑑sx(t)=\int_{a}^{b}\left(K_{ij}\right)_{n}^{n}(t,s)g(s)ds (1.4)

The problem (1.1)-(1.2) is equivalent with the fixed point problem (1.4) where 𝐊:=(Kij)nn\mathbf{K}:=\left(K_{ij}\right)_{n}^{n} has the property that the operator defined by

ga()𝐊((),s)g(s)𝑑sg\rightarrow\int_{a}^{(\cdot)}\mathbf{K}((\cdot),s)g(s)ds

is from C([a,b],m)C\left([a,b],\mathbb{R}^{m}\right) to C([a,b],m)C\left([a,b],\mathbb{R}^{m}\right).
KijK_{ij} is given by the below relations

K11={1,t1sttm0, in the rest \displaystyle K_{11}=\left\{\begin{array}[]{l}1,t_{1}\leq s\leq t\leq t_{m}\\ 0,\text{ in the rest }\end{array}\right. (1.5)
K12(t,s)==K1m(t,s)=0,\displaystyle K_{12}(t,s)=\cdots=K_{1m}(t,s)=0, (1.6)
Ki1={1,t1st2, for all t,i=2,n1¯,0, in the rest, \displaystyle K_{i1}=\left\{\begin{array}[]{l}1,t_{1}\leq s\leq t_{2},\text{ for all }t,i=\overline{2,n-1},\\ 0,\text{ in the rest, }\end{array}\right. (1.7)
Ki,i1={1,ti1sti, for all t,i=2,n1¯,0, in the rest, \displaystyle K_{i,i-1}=\left\{\begin{array}[]{l}1,t_{i-1}\leq s\leq t_{i},\text{ for all }t,i=\overline{2,n-1},\\ 0,\text{ in the rest, }\end{array}\right. (1.8)
Kii={1,tisttn,i=2,n1¯,1,t1tsti0, in the rest \displaystyle K_{ii}=\left\{\begin{array}[]{l}1,t_{i}\leq s\leq t\leq t_{n},i=\overline{2,n-1},\\ 1,t_{1}\leq t\leq s\leq t_{i}\\ 0,\text{ in the rest }\end{array}\right. (1.9)
Ki,i+1(t,s)==Kim(t,s)=0,\displaystyle K_{i,i+1}(t,s)=\cdots=K_{im}(t,s)=0, (1.10)
Km1(t,s)==Km,m1(t,s)=0,\displaystyle K_{m1}(t,s)=\cdots=K_{m,m-1}(t,s)=0, (1.11)
Kmm={1,t1tstm0, in the rest. \displaystyle K_{mm}=\left\{\begin{array}[]{l}1,t_{1}\leq t\leq s\leq t_{m}\\ 0,\text{ in the rest. }\end{array}\right. (1.12)

The problem (1.1)-(1.2) is equivalent with the system

(x1(t)xm(t))=ab𝐊(t,s)(f1(s,x1(s),,xm(s),x1(ω1(s)),,xm(ωm(s)))fm(s,x1(s),,xm(s),x1(ω1(s)),,xm(ωm(s))))𝑑s\left(\begin{array}[]{c}x_{1}(t)\\ \vdots\\ x_{m}(t)\end{array}\right)=\int_{a}^{b}\mathbf{K}(t,s)\left(\begin{array}[]{c}f_{1}\left(s,x_{1}(s),\ldots,x_{m}(s),x_{1}\left(\omega_{1}(s)\right),\ldots,x_{m}\left(\omega_{m}(s)\right)\right)\\ \vdots\\ f_{m}\left(s,x_{1}(s),\ldots,x_{m}(s),x_{1}\left(\omega_{1}(s)\right),\ldots,x_{m}\left(\omega_{m}(s)\right)\right)\end{array}\right)ds

where 𝐊:=(Kij)nn\mathbf{K}:=\left(K_{ij}\right)_{n}^{n} is given by the relations (1.5)-(1.12).

Consider the Banach space X:=(C([a,b],m),)X:=\left(C\left([a,b],\mathbb{R}^{m}\right),\|\cdot\|\right) where \|\cdot\| is the generalized Chebyshev norm,

u:=(u1um), where ui:=maxatb|ui(t)|,i=1,m¯\|u\|:=\left(\begin{array}[]{c}\left\|u_{1}\right\|\\ \vdots\\ \left\|u_{m}\right\|\end{array}\right),\text{ where }\left\|u_{i}\right\|:=\max_{a\leq t\leq b}\left|u_{i}(t)\right|,i=\overline{1,m}

and the operator

Bf:C([a,b],m)C([a,b],m)B_{f}:C\left([a,b],\mathbb{R}^{m}\right)\rightarrow C\left([a,b],\mathbb{R}^{m}\right)

defined by

Bf(x)(t):= second part of (1.13)B_{f}(x)(t):=\text{ second part of }(1.13)

In this paper we shall use the Perov’s fixed point theorem and the weakly Picard operator theory in the study of existence and uniqueness and data dependence of the solution for the problem (1.1)-(1.2). For a better understanding we need some notions and results from WPO theory, see [10]-[14].

2. Picard and Weakly Picard operators

Let ( X,dX,d ) be a metric space and A:XXA:X\rightarrow X an operator. We shall use the following notations:
FA:={xXA(x)=x}F_{A}:=\{x\in X\mid A(x)=x\} - the fixed point set of A;A;
I(A):={YXA(Y)Y,Y}I(A):=\{Y\subset X\mid A(Y)\subset Y,Y\neq\emptyset\} - the family of the nonempty invariant subset of AA;

An+1:=AAn,A0=1X,A1=A,nA^{n+1}:=A\circ A^{n},A^{0}=1_{X},A^{1}=A,n\in\mathbb{N}

Definition 2.1. Let (X,d)(X,d) be a metric space. An operator A:XXA:X\rightarrow X is a Picard operator (PO) if there exists xXx^{*}\in X such that:
(i) FA={x}F_{A}=\left\{x^{*}\right\};
(ii) the sequence (An(x0))n\left(A^{n}\left(x_{0}\right)\right)_{n\in\mathbb{N}} converges to xx^{*} for all x0Xx_{0}\in X.

Definition 2.2. Let ( X,dX,d ) be a metric space. An operator A:XXA:X\rightarrow X is a weakly Picard operator (WPO) if the sequence (An(x))n\left(A^{n}(x)\right)_{n\in\mathbb{N}} converges for all xXx\in X, and its limit (which may depend on xx ) is a fixed point of AA.

Definition 2.3. If AA is weakly Picard operator then we consider the operator AA^{\infty} defined by

A:XX,A(x):=limnAn(x)A^{\infty}:X\rightarrow X,A^{\infty}(x):=\lim_{n\rightarrow\infty}A^{n}(x)

Remark 2.4. It is clear that A(X)=FAA^{\infty}(X)=F_{A}.
Lemma 2.5. Let (X,d,)(X,d,\leq) be an ordered metric space and A:XXA:X\rightarrow X an operator. We suppose that:
(i) AA is WPOWPO;
(ii) AA is increasing.

Then, the operator AA^{\infty} is increasing.
Lemma 2.6. Let ( X,d,X,d,\leq ) an ordered metric space and A,B,C:XXA,B,C:X\rightarrow X be such that:
(i) the operator A,B,CA,B,C are WPOs;
(ii) ABCA\leq B\leq C;
(iii) the operator BB is increasing.

Then xyzx\leq y\leq z implies that A(x)B(y)C(z)A^{\infty}(x)\leq B^{\infty}(y)\leq C^{\infty}(z).
Theorem 2.7 (Perov’s fixed point theorem). Let (X,d)(X,d) with d(x,y)md(x,y)\in\mathbb{R}^{m}, be a complete generalized metric space and A:XXA:X\rightarrow X an operator. We suppose that there exists a matrix QMmm(+)Q\in M_{mm}\left(\mathbb{R}_{+}\right), such that
(i) d(A(x),A(y))Qd(x,y)d(A(x),A(y))\leq Qd(x,y), for all x,yXx,y\in X;
(ii) Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty.

Then
(a) FA={x}F_{A}=\left\{x^{*}\right\},
(b) An(x)=xA^{n}(x)=x^{*} as nn\rightarrow\infty and

d(An(x),x)(IQ)1Qnd(x0,A(x0))d\left(A^{n}(x),x^{*}\right)\leq(I-Q)^{-1}Q^{n}d\left(x_{0},A\left(x_{0}\right)\right)

Theorem 2.8 (Fibre contraction principle). Let (X,d)(X,d) and (Y,ρ)(Y,\rho) be two metric spaces and A:X×YX×Y,A=(B,C),(B:XX,C:X×YY)A:X\times Y\rightarrow X\times Y,A=(B,C),(B:X\rightarrow X,C:X\times Y\rightarrow Y) a triangular operator. We suppose that
(i) (Y,ρ)(Y,\rho) is a complete metric space;
(ii) the operator BB is Picard operator;
(iii) there exists l[0,1)l\in[0,1) such that C(x,):YYC(x,\cdot):Y\rightarrow Y is a l-contraction, for all xXx\in X;
(iv) if (x,y)FA\left(x^{*},y^{*}\right)\in F_{A}, then C(,y)C\left(\cdot,y^{*}\right) is continuous in xx^{*}.

Then the operator AA is Picard operator.
For more details on WPOs theory see [10], [12], [13].

3. Existence and uniqueness

In what follows we consider the problem (1.1)-(1.2) in the conditions ( C1\mathrm{C}_{1} )(C3)\left(\mathrm{C}_{3}\right).

The problem (1.1)-(1.2) is equivalent with the fixed point equation

Bf(x)=x,xC([a,b],m)B_{f}(x)=x,x\in C\left([a,b],\mathbb{R}^{m}\right)

where Bf=B_{f}= the second part of (1.13).
From the condition ( C3C_{3} ) we have, for t[a,b]t\in[a,b]

|Bf(x)(t)Bf(y)(t)|\displaystyle\left|B_{f}(x)(t)-B_{f}(y)(t)\right|\leq
ab𝐊(t,s)[(|f1(s,x1(s),,xm(s),x1(ω1(s)),,xm(ωm(s)))||fm(s,x1(s),,xm(s),x1(ω1(s)),,xm(ωm(s)))|)\displaystyle\leq\int_{a}^{b}\mathbf{K}(t,s)\left[\left(\begin{array}[]{c}\left|f_{1}\left(s,x_{1}(s),\ldots,x_{m}(s),x_{1}\left(\omega_{1}(s)\right),\ldots,x_{m}\left(\omega_{m}(s)\right)\right)\right|\\ \vdots\\ \left|f_{m}\left(s,x_{1}(s),\ldots,x_{m}(s),x_{1}\left(\omega_{1}(s)\right),\ldots,x_{m}\left(\omega_{m}(s)\right)\right)\right|\end{array}\right)\right.
(|f1(s,y1(s),,ym(s),y1(ω1(s)),,ym(ωm(s)))||fm(s,y1(s),,ym(s),y1(ω1(s)),,ym(ωm(s)))|)]ds\displaystyle\left.-\left(\begin{array}[]{c}\left|f_{1}\left(s,y_{1}(s),\ldots,y_{m}(s),y_{1}\left(\omega_{1}(s)\right),\ldots,y_{m}\left(\omega_{m}(s)\right)\right)\right|\\ \vdots\\ \left|f_{m}\left(s,y_{1}(s),\ldots,y_{m}(s),y_{1}\left(\omega_{1}(s)\right),\ldots,y_{m}\left(\omega_{m}(s)\right)\right)\right|\end{array}\right)\right]ds
ab𝐊(t,s)(S11+S1,m+1S12+S1,m+2S1,m+S1,2mSm,1+Sm,m+1Sm,2+Sm,m+2Sm,m+Sm,2m)\displaystyle\leq\int_{a}^{b}\mathbf{K}(t,s)\left(\begin{array}[]{ccc}S_{11}+S_{1,m+1}&S_{12}+S_{1,m+2}&\cdots\\ \vdots&S_{1,m}+S_{1,2m}\\ \vdots&\cdots&\vdots\\ S_{m,1}+S_{m,m+1}&S_{m,2}+S_{m,m+2}&\cdots\\ S_{m,m}+S_{m,2m}\end{array}\right)
(x1y1xmym)dsQ(x1y1xmym)\displaystyle\cdot\left(\begin{array}[]{c}\left\|x_{1}-y_{1}\right\|\\ \vdots\\ \left\|x_{m}-y_{m}\right\|\end{array}\right)ds\leq Q\left(\begin{array}[]{c}\left\|x_{1}-y_{1}\right\|\\ \vdots\\ \left\|x_{m}-y_{m}\right\|\end{array}\right)

for all x,yXx,y\in X and
Q=maxatbab𝐊(t,s)𝑑s(S11+S1,m+1S12+S1,m+2S1,m+S1,2mSm,1+Sm,m+1Sm,2+Sm,m+2Sm,m+Sm,2m)Q=\max_{a\leq t\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\left(\begin{array}[]{cccc}S_{11}+S_{1,m+1}&S_{12}+S_{1,m+2}&\cdots&S_{1,m}+S_{1,2m}\\ \vdots&\vdots&\cdots&\vdots\\ S_{m,1}+S_{m,m+1}&S_{m,2}+S_{m,m+2}&\cdots&S_{m,m}+S_{m,2m}\end{array}\right).
Then

Bf(x)Bf(y)Qxy\left\|B_{f}(x)-B_{f}(y)\right\|\leq Q\|x-y\|

and if Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty, the operator BfB_{f} is QQ-contraction. From the Perov’s fixed point theorem we have that the operator BfB_{f} is PO and has a unique
fixed point

x=(x11,,xmm)X\stackrel{{\scriptstyle*}}=\left(\stackrel{{\scriptstyle*}}{{x_{1}}},\ldots,\stackrel{{\scriptstyle*}}{{x_{m}}}\right)\in X

Since ff is continuous, we have that xC([a,b],m)\stackrel{{\scriptstyle*}}\in C\left([a,b],\mathbb{R}^{m}\right) is the unique solution for the problem (1.1)-(1.2).

So, we have the following existence and uniqueness theorem
Theorem 3.1. We suppose that:
(i) the conditions (C1)(C3)\left(C_{1}\right)-\left(C_{3}\right) are satisfied;
(ii) Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty.

Then:
(a) the problem (1.1)-(1.2) has in C([a,b],m)C\left([a,b],\mathbb{R}^{m}\right) a unique solution x=(x11,,xmm)\stackrel{{\scriptstyle*}}=\left(\stackrel{{\scriptstyle*}}{{x_{1}}},\ldots,\stackrel{{\scriptstyle*}}{{x_{m}}}\right)
C([a,b],m);\in C\left([a,b],\mathbb{R}^{m}\right);
(b) for all x0C([a,b],m)x^{0}\in C\left([a,b],\mathbb{R}^{m}\right), the sequence (xn)n\left(x^{n}\right)_{n\in\mathbb{N}} defined by

xn+1=Bf(xn)x^{n+1}=B_{f}\left(x^{n}\right)

converges uniformly to x\stackrel{{\scriptstyle*}}, for all t[a,b]t\in[a,b], and

(x1nx1xmnxm)(IQ)1Qn(x10x11xm0xm1)\left(\begin{array}[]{c}\left\|x_{1}^{n}-\stackrel{{\scriptstyle*}}_{1}\right\|\\ \vdots\\ \left\|x_{m}^{n}-\stackrel{{\scriptstyle*}}_{m}\right\|\end{array}\right)\leq(I-Q)^{-1}Q^{n}\left(\begin{array}[]{c}\left\|x_{1}^{0}-x_{1}^{1}\right\|\\ \vdots\\ \left\|x_{m}^{0}-x_{m}^{1}\right\|\end{array}\right)

4. Inequalities of Čaplygin type

In this section we shall study the relation between the solution of the problem (1.1)-(1.2) and the subsolution of the same problem.

Let x\stackrel{{\scriptstyle*}} the unique solution of the problem (1.1)-(1.2) and yy the subsolution of the same problem, i.e.

y(t)f(t,y(t),y(ω(t))),t[a,b]y^{\prime}(t)\leq f(t,y(t),y(\omega(t))),t\in[a,b] (4.1)

where y:=(y1,y2,,ym),y(ω):=(y1(ω1),y2(ω2),,ym(ωm))y:=\left(y_{1},y_{2},\ldots,y_{m}\right),y(\omega):=\left(y_{1}\left(\omega_{1}\right),y_{2}\left(\omega_{2}\right),\ldots,y_{m}\left(\omega_{m}\right)\right) and f:=(f1,f2,f:=\left(f_{1},f_{2},\ldots\right.,
fm)\left.f_{m}\right) ) satisfy the conditions (C1)(C3)\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{3}\right) and

{y1(a)=0y2(t2)=y1(t2)ym1(tm1)=ym2(tm1)ym(b)=0\left\{\begin{array}[]{l}y_{1}(a)=0\\ y_{2}\left(t_{2}\right)=y_{1}\left(t_{2}\right)\\ \cdots\\ y_{m-1}\left(t_{m-1}\right)=y_{m-2}\left(t_{m-1}\right)\\ y_{m}(b)=0\end{array}\right.

In this section we consider the operator Bf=B_{f}= the second part of (1.13) on the ordered Banach space X=((C[a,b],m),,)X=\left(\left(C[a,b],\mathbb{R}^{m}\right),\|\cdot\|,\leq\right), where on m\mathbb{R}^{m} we have the ordered relation:

xyxiyi,i=1,m¯.x\leq y\Longleftrightarrow x_{i}\leq y_{i},i=\overline{1,m}.

We have the following theorem
Theorem 4.1. We suppose that:
(a) the conditions (C1)(C3)\left(C_{1}\right)-\left(C_{3}\right) are satisfied;
(b) Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty;
(c) f(t,,):2mmf(t,\cdot,\cdot):\mathbb{R}^{2m}\rightarrow\mathbb{R}^{m} is increasing, for all t[a,b]t\in[a,b].

Let xx be a solution of the system (1.1) and yy be a solution of the inequality problem (4.1)-(4.2).

Then yxy\leq x for all t[a,b]t\in[a,b].
Proof. In terms of the operator BfB_{f} defined by the relation (1.13), we have

x=Bf(x) and yBf(y).x=B_{f}(x)\text{ and }y\leq B_{f}(y).

On the other hand from condition (c) and Lemma 2.5, we have that the operator BfB_{f}^{\infty} is increasing. Hence
yBf(y)Bf2(y)Bf(y)Bf(x)=xy\leq B_{f}(y)\leq B_{f}^{2}(y)\leq\cdots\leq B_{f}^{\infty}(y)\leq B_{f}^{\infty}(x)=x.
So, yxy\leq x.

5. Data dependence: monotony

In this section we study the monotony of the system (1.1)-(1.2) with respect to ff. For this we use the abstract comparison Lemma from section 2.

Consider the following equations

x(t)\displaystyle x^{\prime}(t) =f(t,x1(t),,xm(t),x1(ω1(t)),,xm(ωm(t))),\displaystyle=f\left(t,x_{1}(t),\ldots,x_{m}(t),x_{1}\left(\omega_{1}(t)\right),\ldots,x_{m}\left(\omega_{m}(t)\right)\right), (5.1)
y(t)\displaystyle y^{\prime}(t) =g(t,y1(t),,ym(t),y1(ω1(t)),,ym(ωm(t))),\displaystyle=g\left(t,y_{1}(t),\ldots,y_{m}(t),y_{1}\left(\omega_{1}(t)\right),\ldots,y_{m}\left(\omega_{m}(t)\right)\right), (5.2)
z(t)=h(t,z1(t),,zm(t),z1(ω1(t)),,zm(ωm(t)))z^{\prime}(t)=h\left(t,z_{1}(t),\ldots,z_{m}(t),z_{1}\left(\omega_{1}(t)\right),\ldots,z_{m}\left(\omega_{m}(t)\right)\right) (5.3)

with the polylocal conditions (1.2) for each problem and let x,y\stackrel{{\scriptstyle*}},\stackrel{{\scriptstyle*}} and z\stackrel{{\scriptstyle*}} the unique solutions of these problems. Then we need the operators Bf,BgB_{f},B_{g} and BhB_{h} corresponding to the second part of the problems (5.1), (5.2) and (5.3).

Theorem 5.1. Let f,g,hC([a,b]×2m,)f,g,h\in C\left([a,b]\times\mathbb{R}^{2m},\mathbb{R}\right), that satisfy the conditions (C1)(C3)\left(C_{1}\right)-\left(C_{3}\right) from section 1.

We suppose that we have
(i) fghf\leq g\leq h;
(ii) g(t,,):2mg(t,\cdot,\cdot):\mathbb{R}^{2m}\rightarrow\mathbb{R} is increasing.

Let x,y\stackrel{{\scriptstyle*}},\stackrel{{\scriptstyle*}} and z\stackrel{{\scriptstyle*}} the solutions of the equations (5.1), (5.2) and (5.3).
Then x(t)y(t)z(t)\stackrel{{\scriptstyle*}}(t)\leq\stackrel{{\scriptstyle*}}(t)\leq\stackrel{{\scriptstyle*}}(t) for all t[a,b]t\in[a,b], meaning that the unique solution of the system (1.1)-(1.2) is increasing with respect to the right hand.

Proof. From Theorem 3.1 the operators Bf,Bg,BhB_{f},B_{g},B_{h} are POs.
From the condition (ii) it follows that the operator BgB_{g} is monotone increasing and from condition (i) we have BfBgBhB_{f}\leq B_{g}\leq B_{h}.

But x=Bf(x),y=Bg(y)\stackrel{{\scriptstyle*}}=B_{f}{}^{\infty}(\stackrel{{\scriptstyle*}}),\stackrel{{\scriptstyle*}}=B_{g}{}^{\infty}(\stackrel{{\scriptstyle*}}) and z=Bh(z)\stackrel{{\scriptstyle*}}=B_{h}{}^{\infty}(\stackrel{{\scriptstyle*}}).
By applying the abstract comparison Lemma 2.6 follows that the unique solution of the problem (1.1)-(1.2) is increasing with respect to BfB_{f}.

6. Data dependence: continuity

Consider the problems (1.1)-(1.2) with the dates f,gf,g and suppose that the conditions from Theorem 3.1 are satisfied.

Let f,gC([a,b]×2m,m)f,g\in C\left([a,b]\times\mathbb{R}^{2m},\mathbb{R}^{m}\right) and

Si1f,,Si,2mf,Si1g,,Si,2mgMm,2m(+),i=1,m¯S_{i1}^{f},\ldots,S_{i,2m}^{f},S_{i1}^{g},\ldots,S_{i,2m}^{g}\in M_{m,2m}\left(\mathbb{R}_{+}\right),i=\overline{1,m}

as in condition (C3)\left(\mathrm{C}_{3}\right).
Consider SijMm,2m(+),i=1,m¯,j=1,2m¯S_{ij}\in M_{m,2m}\left(\mathbb{R}_{+}\right),i=\overline{1,m},j=\overline{1,2m} with

Sij=max(Sijf,Sijg),i=1,m¯,j=1,2m¯S_{ij}=\max\left(S_{ij}^{f},S_{ij}^{g}\right),i=\overline{1,m},j=\overline{1,2m}

Let
Qf=maxa±bab𝐊(t,s)𝑑s(S11f+S1,m+1fS12f+S1,m+2fS1,mf+S1,2mfSm,1f+Sm,m+1fSm,2f+Sm,m+2fSm,mf+Sm,2mf)Q_{f}=\max_{a\leq\pm\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\left(\begin{array}[]{cccc}S_{11}^{f}+S_{1,m+1}^{f}&S_{12}^{f}+S_{1,m+2}^{f}&\cdots&S_{1,m}^{f}+S_{1,2m}^{f}\\ \vdots&\vdots&\cdots&\vdots\\ S_{m,1}^{f}+S_{m,m+1}^{f}&S_{m,2}^{f}+S_{m,m+2}^{f}&\cdots&S_{m,m}^{f}+S_{m,2m}^{f}\end{array}\right),
QgQ_{g} analogously and
Q=maxatbab𝐊(t,s)𝑑s(S11+S1,m+1S12+S1,m+2S1,m+S1,2mSm,1+Sm,m+1Sm,2+Sm,m+2Sm,m+Sm,2m)Q=\max_{a\leq t\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\left(\begin{array}[]{cccc}S_{11}+S_{1,m+1}&S_{12}+S_{1,m+2}&\cdots&S_{1,m}+S_{1,2m}\\ \vdots&\vdots&\cdots&\vdots\\ S_{m,1}+S_{m,m+1}&S_{m,2}+S_{m,m+2}&\cdots&S_{m,m}+S_{m,2m}\end{array}\right),
Denote by x(;f)\stackrel{{\scriptstyle*}}(\cdot;f) the solution of the problem (1.1)-(1.2).
Theorem 6.1. Let f,gf,g satisfy the conditions (C1)(C3)\left(C_{1}\right)-\left(C_{3}\right). Furthermore, we suppose that there exist η+m\eta\in\mathbb{R}_{+}^{m} such that

|f(t,x1,x2)g(t,x1,x2)|η, for all tC[a,b] and x1,x2m.\left|f\left(t,x^{1},x^{2}\right)-g\left(t,x^{1},x^{2}\right)\right|\leq\eta,\text{ for all }t\in C[a,b]\text{ and }x^{1},x^{2}\in\mathbb{R}^{m}.

Then

x(t;f)x(t;g)(IQf)1maxasbab𝐊(t,s)dsη\|\stackrel{{\scriptstyle*}}(t;f)-\stackrel{{\scriptstyle*}}(t;g)\|\leq\left(I-Q_{f}\right)^{-1}\max_{a\leq s\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\eta

where x(t;f)\stackrel{{\scriptstyle*}}(t;f) and x(t;g)\stackrel{{\scriptstyle*}}(t;g) are the solution of the problem (1.1)-(1.2) with respect to ff and gg.

Proof. Consider the operators BfB_{f} and BgB_{g}. From Theorem 3.1 it follows that

Bf(x)Bg(y)Qxy for all x,yX.\left\|B_{f}(x)-B_{g}(y)\right\|\leq Q\|x-y\|\text{ for all }x,y\in X.

Additionally

Bf(x)Bg(x)maxasbab𝐊(t,s)𝑑sη\left\|B_{f}(x)-B_{g}(x)\right\|\leq\max_{a\leq s\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\eta

We have now

x(t;f)x(t;g)=Bf(x(t;f))Bg(x(t;g))\displaystyle\|\stackrel{{\scriptstyle*}}(t;f)-\stackrel{{\scriptstyle*}}(t;g)\|=\left\|B_{f}(\stackrel{{\scriptstyle*}}(t;f))-B_{g}(\stackrel{{\scriptstyle*}}(t;g))\right\|\leq
Bf(x(t;f))Bf(x(t;g))+Bf(x(t;g))Bg(x(t;g))\displaystyle\leq\left\|B_{f}(\stackrel{{\scriptstyle*}}(t;f))-B_{f}(\stackrel{{\scriptstyle*}}(t;g))\right\|+\left\|B_{f}(\stackrel{{\scriptstyle*}}(t;g))-B_{g}(\stackrel{{\scriptstyle*}}(t;g))\right\|\leq
Qx(t;f)x(t;g)+maxasbab𝐊(t,s)dsη\displaystyle\leq Q\|\stackrel{{\scriptstyle*}}(t;f)-\stackrel{{\scriptstyle*}}(t;g)\|+\max_{a\leq s\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\eta

Because Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty imply that

(IQ)1Mmm(+)(I-Q)^{-1}\in M_{mm}\left(\mathbb{R}^{+}\right)

so we have

x(t;f1)x(t;f2)(IQf)1maxasbab𝐊(t,s)dsη\left\|\stackrel{{\scriptstyle*}}\left(t;f^{1}\right)-\stackrel{{\scriptstyle*}}\left(t;f^{2}\right)\right\|\leq\left(I-Q_{f}\right)^{-1}\max_{a\leq s\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\eta

7. Data dependence: differentiability

In this section we present the dependence by parameter λ\lambda of the solution of the problem (1.1)-(1.2).

Consider the following differential system with parameter:

x(t)=f(t,x1(t),,\displaystyle x^{\prime}(t)=f\left(t,x_{1}(t),\ldots,\right. xm(t),x1(ω1(t)),,xm(ωm(t));λ),t[a,b]\displaystyle\left.x_{m}(t),x_{1}\left(\omega_{1}(t)\right),\ldots,x_{m}\left(\omega_{m}(t)\right);\lambda\right),t\in[a,b] (7.1)
{x1(a)=0x2(t2)=x1(t2)xm1(tm1)=xm2(tm1)xm(b)=0\displaystyle\left\{\begin{array}[]{l}x_{1}(a)=0\\ x_{2}\left(t_{2}\right)=x_{1}\left(t_{2}\right)\\ \cdots\\ x_{m-1}\left(t_{m-1}\right)=x_{m-2}\left(t_{m-1}\right)\\ x_{m}(b)=0\end{array}\right. (7.2)

where x:=(x1,,xm)x:=\left(x_{1},\ldots,x_{m}\right) and f:=(f1,,fm)f:=\left(f_{1},\ldots,f_{m}\right).
We suppose that:
(C1)a=t1<t2<<tm1<tm=b;λJ\left(\mathrm{C}_{1}\right)a=t_{1}<t_{2}<\ldots<t_{m-1}<t_{m}=b;\lambda\in J\subset\mathbb{R} a compact interval;
(C2)fC1([a,b]×2m×J,m),ωiC([a,b],[a,b])\left(\mathrm{C}_{2}\right)f\in C^{1}\left([a,b]\times\mathbb{R}^{2m}\times J,\mathbb{R}^{m}\right),\omega_{i}\in C([a,b],[a,b]);
(C3)\left(\mathrm{C}_{3}\right) there exists SijMm,2m(+)S_{ij}\in M_{m,2m}\left(\mathbb{R}_{+}\right)such that

[(|fi(t,u1,,u2m;λ)uj|)i,j=1,m¯]Mm,2m()Sij\left[\left(\left|\frac{\partial f_{i}\left(t,u_{1},\ldots,u_{2m};\lambda\right)}{\partial u_{j}}\right|\right)_{i,j=\overline{1,m}}\right]_{M_{m,2m}(\mathbb{R})}\leq S_{ij}

for all t[a,b],uj2m,i=1,m¯,j=1,2m¯t\in[a,b],u_{j}\in\mathbb{R}^{2m},i=\overline{1,m},j=\overline{1,2m};
(C4)\left(\mathrm{C}_{4}\right) for

Q=maxatbab𝐊(t,s)𝑑s(S11+S1,m+1S12+S1,m+2S1,m+S1,2mSm,1+Sm,m+1Sm,2+Sm,m+2Sm,m+Sm,2m)Q=\max_{a\leq t\leq b}\int_{a}^{b}\mathbf{K}(t,s)ds\cdot\left(\begin{array}[]{cccc}S_{11}+S_{1,m+1}&S_{12}+S_{1,m+2}&\cdots&S_{1,m}+S_{1,2m}\\ \vdots&\vdots&\vdots&\vdots\\ S_{m,1}+S_{m,m+1}&S_{m,2}+S_{m,m+2}&\cdots&S_{m,m}+S_{m,2m}\end{array}\right)

we have Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty.
In the above conditions, from Theorem 3.1 we have that the problem (1.1)(1.2) has a unique solution, x(;λ)\stackrel{{\scriptstyle*}}(\cdot;\lambda), for any λ\lambda\in\mathbb{R}.

We prove that x(t;)C1(J,m),t[a,b]\stackrel{{\scriptstyle*}}(t;\cdot)\in C^{1}\left(J,\mathbb{R}^{m}\right),\forall t\in[a,b].
For this we consider the system

x(t;λ)=f(t,x1(t;λ),,xm(t;λ),x1(ω1(t);λ),,xm(ωm(t);λ);λ)x^{\prime}(t;\lambda)=f\left(t,x_{1}(t;\lambda),\ldots,x_{m}(t;\lambda),x_{1}\left(\omega_{1}(t);\lambda\right),\ldots,x_{m}\left(\omega_{m}(t);\lambda\right);\lambda\right) (7.3)

t[a,b],λJ,xC([a,b]×J,m)t\in[a,b],\lambda\in J,x\in C\left([a,b]\times J,\mathbb{R}^{m}\right).

The system (7.3) is equivalent with
xi(t;λ)=ab𝐊(t,s)fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)𝑑sx_{i}(t;\lambda)=\int_{a}^{b}\mathbf{K}(t,s)f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)ds,
where i=1,m¯i=\overline{1,m}.
Let X:=(C([a,b]×J,m),)X:=\left(C\left([a,b]\times J,\mathbb{R}^{m}\right),\|\cdot\|\right) with the Chebyshev norm,

xC:=(x1xm)+m\|x\|_{C}:=\left(\begin{array}[]{c}\left\|x_{1}\right\|\\ \vdots\\ \left\|x_{m}\right\|\end{array}\right)\in\mathbb{R}_{+}^{m}

Now we consider the operator

B:C([a,b]×J,m)C([a,b]×J,m)B:C\left([a,b]\times J,\mathbb{R}^{m}\right)\rightarrow C\left([a,b]\times J,\mathbb{R}^{m}\right)

where

B(x)(t;λ):= second part of (7.4). B(x)(t;\lambda):=\text{ second part of (7.4). }

It is clear, from the proof of the Theorem 3.1, that in the conditions (C1)(C4)\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{4}\right), the operator BB is Picard operator, since

B(y)B(z)CQyzC\|B(y)-B(z)\|_{C}\leq Q\|y-z\|_{C}

Let x=(x11,,xm)\stackrel{{\scriptstyle*}}=\left(\stackrel{{\scriptstyle*}}{{x_{1}}},\ldots,x_{m}^{*}\right) be the unique fixed point of BB.
We suppose that there exists xiλ,i=1,m¯\frac{\partial x_{i}^{*}}{\partial\lambda},i=\overline{1,m}. From relation (7.4) and condition ( C3\mathrm{C}_{3} ) we have

xi(t;λ)λ==ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)u1)i,j+ab𝐊(t,s)(fi(s,x1(s;λ)λds+++ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)um)i,jxm(s;λ)λds+um+1\begin{gathered}\frac{\partial x_{i}^{*}(t;\lambda)}{\partial\lambda}=\\ =\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{1}}\right)_{i,j}\\ +\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda)\right.}{\partial\lambda}ds+\cdots+\right.\\ +\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{m}}\right)_{i,j}\\ \frac{\partial x_{m}^{*}(s;\lambda)}{\partial\lambda}ds+\\ \partial u_{m+1}\end{gathered}
x^1(h1(s);λ)λds+++ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)u2m)i,j+ab𝐊(t,s)(i(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)λ)i,j𝑑s+\begin{gathered}\cdot\frac{\partial\hat{x}_{1}\left(h_{1}(s);\lambda\right)}{\partial\lambda}ds+\cdots+\\ +\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{2m}}\right)_{i,j}\\ +\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial_{i}^{*}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial\lambda}\right)_{i,j}ds+\end{gathered}

for t[a,b],λJ,i=1,m¯,j=1,2m¯t\in[a,b],\lambda\in J,i=\overline{1,m},j=\overline{1,2m}.
This relation suggest us to consider the following operator

C:X×XX,(x1,,xm,y1,,ym)C(x1,,xm,y1,,ym)C:X\times X\rightarrow X,\left(x_{1},\ldots,x_{m},y_{1},\ldots,y_{m}\right)\rightarrow C\left(x_{1},\ldots,x_{m},y_{1},\ldots,y_{m}\right)

where

C(x1,,xm,y1,,ym)(t;λ):=\displaystyle C\left(x_{1},\ldots,x_{m},y_{1},\ldots,y_{m}\right)(t;\lambda)=
=ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)u1)i,j\displaystyle=\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{1}}\right)_{i,j}
y1(s;λ)ds++\displaystyle\cdot y_{1}(s;\lambda)ds+\cdots+
+ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)um)i,j\displaystyle+\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{m}}\right)_{i,j}
ym(s;λ)ds+\displaystyle\cdot y_{m}(s;\lambda)ds+
+ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s);λ),,xm(ωm(s);λ);λ)um+1)i,j\displaystyle+\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s);\lambda\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{m+1}}\right)_{i,j}
y1(h1(s);λ)ds++\displaystyle\cdot y_{1}\left(h_{1}(s);\lambda\right)ds+\cdots+
+ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s;λ)),,xm(ωm(s);λ);λ)u2m)i,j\displaystyle+\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s;\lambda)\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial u_{2m}}\right)_{i,j}
ym(hm(s);λ)ds\displaystyle\cdot y_{m}\left(h_{m}(s);\lambda\right)ds
+ab𝐊(t,s)(fi(s,x1(s;λ),,xm(s;λ),x1(ω1(s;λ)),,xm(ωm(s);λ);λ)λ)i,j𝑑s\displaystyle+\int_{a}^{b}\mathbf{K}(t,s)\left(\frac{\partial f_{i}\left(s,x_{1}(s;\lambda),\ldots,x_{m}(s;\lambda),x_{1}\left(\omega_{1}(s;\lambda)\right),\ldots,x_{m}\left(\omega_{m}(s);\lambda\right);\lambda\right)}{\partial\lambda}\right)_{i,j}ds

for t[t0,b],λJ,i=1,m¯,j=1,2m¯t\in\left[t_{0},b\right],\lambda\in J,i=\overline{1,m},j=\overline{1,2m}.
In this way we have the triangular operator

A:X×XX×X,A(x1,,xm,y1,,ym)=(B(x1,,xm)(t;λ),C(x1,,xm,y1,,ym)(t;λ))\begin{gathered}A:X\times X\rightarrow X\times X,\\ A\left(x_{1},\ldots,x_{m},y_{1},\ldots,y_{m}\right)\\ =\left(B\left(x_{1},\ldots,x_{m}\right)(t;\lambda),C\left(x_{1},\ldots,x_{m},y_{1},\ldots,y_{m}\right)(t;\lambda)\right)\end{gathered}

where BB is a Picard operator and C(x1,,xm,):XXC\left(x_{1},\ldots,x_{m},\cdot\right):X\rightarrow X is QQ-contraction.
Indeed we have

C(x,u)(t;λ)C(x,v)(t;λ)mQuvC,t[t0,b],λJ\|C(\stackrel{{\scriptstyle*}},u)(t;\lambda)-C(\stackrel{{\scriptstyle*}},v)(t;\lambda)\|_{\mathbb{R}^{m}}\leq Q\|u-v\|_{C},\forall t\in\left[t_{0},b\right],\forall\lambda\in J

which implies that

C(x,u)C(x,v)CQuvC,u,vX\|C(\stackrel{{\scriptstyle*}},u)-C(\stackrel{{\scriptstyle*}},v)\|_{C}\leq Q\|u-v\|_{C},\forall u,v\in X

Since Qn0Q^{n}\rightarrow 0 as nn\rightarrow\infty, from the Theorem of fibre contraction (see [12], [13]) follows that the operator AA is Picard operator and has a unique fixed point (x,y)X×X(\stackrel{{\scriptstyle*}},\stackrel{{\scriptstyle*}})\in X\times X. So the sequences

(xn+1,yn+1)=(B(xn),C(xn,yn)),n\left(x^{n+1},y^{n+1}\right)=\left(B\left(x^{n}\right),C\left(x^{n},y^{n}\right)\right),n\in\mathbb{N}

converges uniformly (with respect to t[a,b],λJt\in[a,b],\lambda\in J ) to (x,y)FA(\stackrel{{\scriptstyle*}},\stackrel{{\scriptstyle*}})\in F_{A}, for any x0X,y0Xx^{0}\in X,y^{0}\in X.

If we take

xi0=0,yi0=xi0λ=0, then yi1=xi1λ,i=1,m¯x_{i}^{0}=0,y_{i}^{0}=\frac{\partial x_{i}^{0}}{\partial\lambda}=0,\text{ then }y_{i}^{1}=\frac{\partial x_{i}^{1}}{\partial\lambda},i=\overline{1,m}

By induction we prove that

yin=xinλ,n,i=1,m¯y_{i}^{n}=\frac{\partial x_{i}^{n}}{\partial\lambda},\forall n\in\mathbb{N},i=\overline{1,m}

Thus

xinunifxii, as n,i=1,m¯xinλ unif yii, as n,i=1,m¯\begin{array}[]{r}x_{i}^{n}\xrightarrow{unif}\stackrel{{\scriptstyle*}}{{x_{i}}},\text{ as }n\rightarrow\infty,i=\overline{1,m}\\ \frac{\partial x_{i}^{n}}{\partial\lambda}\xrightarrow{\text{ unif }}\stackrel{{\scriptstyle*}}{{y_{i}}},\text{ as }n\rightarrow\infty,i=\overline{1,m}\end{array}

These imply that there exists xiλ\frac{\partial\stackrel{{\scriptstyle*}}_{i}}{\partial\lambda} and

xi(t;λ)λ=y(t;λ),i=1,m¯\frac{\partial x_{i}(t;\lambda)}{\partial\lambda}=\stackrel{{\scriptstyle*}}(t;\lambda),i=\overline{1,m}

So, we have
Theorem 7.1. Suppose that conditions (C1)(C3)\left(\mathrm{C}_{1}\right)-\left(\mathrm{C}_{3}\right) hold. Then,
(i) the problem (7.1)-(7.2) has a unique solution x=(x11,,xmm)C([a,b]×J,m);\stackrel{{\scriptstyle*}}=\left(\stackrel{{\scriptstyle*}}{{x_{1}}},\ldots,\stackrel{{\scriptstyle*}}{{x_{m}}}\right)\in C\left([a,b]\times J,\mathbb{R}^{m}\right);
(ii) x(t;)C1(J,m),t[a,b]\stackrel{{\scriptstyle*}}(t;\cdot)\in C^{1}\left(J,\mathbb{R}^{m}\right),\forall t\in[a,b].

8. Remarks

Remark 8.1. The problem (1.1)-(1.2) is a generalization of a problem studied by D. V. Ionescu in [2].
D.V. Ionescu’s problem. Let tk[a,b]t_{k}\in[a,b] with t1<t2<<tn(n,n3t_{1}<t_{2}<\ldots<t_{n}(n\in\mathbb{N},n\geq 3 ) and f=(f1,,fn)C([a,b]×n,n)f=\left(f_{1},\ldots,f_{n}\right)\in C\left([a,b]\times\mathbb{R}^{n},\mathbb{R}^{n}\right). We suppose that t1=at_{1}=a and tn=bt_{n}=b. The problem is to study the existence of x=(x1,,xn)C1([a,b],n)x=\left(x_{1},\ldots,x_{n}\right)\in C^{1}\left([a,b],\mathbb{R}^{n}\right) such that

x(t)=f(t,x(t)),t[a,b]x^{\prime}(t)=f(t,x(t)),t\in[a,b]

and

{x1(t1)=0x2(t2)=x1(t2)xn1(tn1)=xn2(tn1)xn(tn)=0\left\{\begin{array}[]{l}x_{1}\left(t_{1}\right)=0\\ x_{2}\left(t_{2}\right)=x_{1}\left(t_{2}\right)\\ \cdots\\ x_{n-1}\left(t_{n-1}\right)=x_{n-2}\left(t_{n-1}\right)\\ x_{n}\left(t_{n}\right)=0\end{array}\right.

D. V. Ionescu proved that if the interval [a,b][a,b] is sufficiently small and the functions fif_{i} are Lipschitz with respect to xx, then this problem has a unique solution, [7].

Remark 8.2. Some problems concerning equation (1.1) were study in the following particular cases (see [10], [11])

ωi(t)=tτi,i=1,m¯,τ>0\omega_{i}(t)=t-\tau_{i},i=\overline{1,m},\tau>0

and

ω1(t)=λt,ω2(t)=1λt,0<λ<1 (see [4]). \omega_{1}(t)=\lambda t,\omega_{2}(t)=\frac{1}{\lambda}t,0<\lambda<1\text{ (see [4]). }

For other considerations on the functional-differential equations we mention: [6], [12], [13], [14].

References

[1] O. Arama, Contributions to the study of polylocal problems relative to differential equations, Ph.D. Thesis (in Romanian), Cluj, 1965.
[2] D.V. Ionescu, Quelques théorems d’existence des intégrales des systèmes d’équations différentielles, C.R. de l’Acad. Sci. Paris, 186(1929), 1262-1263.
[3] Ph. Hartman, A. Wintner, On an oscillation criterion of de la Vallée Poussin, Quaterly of Applied Mathematics, 13(1955), no. 3, 330-332.
[4] V. Mureşan, Differential equation with linear modification of arguments, Transilvania Press, Cluj-Napoca, 1997.
[5] A.I. Perov, A.V. Kibenko, On a general method to study boundary value problems, Iz. Akad. Nauk., 30(1966), 249-264.
[6] A. Petruşel, I.A. Rus, Fixed point theorems in LL-spaces, Proc. Amer. Math. Soc., 134(2006), 411-418.
[7] A. Petruşel, I.A. Rus, Mathematical contributions of Professor D.V. Ionescu, Notices from the ISMS, January, 2008, 1-11.
[8] T. Popoviciu, Sur quelques propriètès des fonctions d’une ou deux variables rèelles, Mathematica (Cluj), 8(1934), 1-86.
[9] D. Ripianu, On Vallée Poussin inequality in the case of second order differential equations (in Romanian), St. Cerc. Mat. (Cluj), 8(1963), 123-150.
[10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), no.1, 191-219.
[11] I.A. Rus, Functional differential equations of mixed type, via weakly Picard operators, Sem. on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.
[12] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, ClujNapoca, 2001.
[13] I.A. Rus, Weakly Picard operators and applications, Sem. on Fixed Point Theory, ClujNapoca, 2(2001), 41-58.
[14] I.A. Rus, A. Petruşel, M. Şerban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
[15] Ch.J. de la Vallée Poussin, Sur l’équation différentialle du second ordre. Détermination d’une intégrale par deux valeurs assignée. Extension aux équations d’ordre n,Jn,\mathrm{~J}. Math. Pures Appl., 8(1929), 125-144.

Received: June 5, 2008; Accepted: October 10, 2008.

2009

Related Posts