Abstract
The purpose of this paper is to study a generalization of a D.V. Ionescu’s problem. Existence, uniqueness and data dependence (monotony, continuity, differentiability with respect to parameter) results of solution for the Cauchy problem are obtained using weakly Picard operator theory
Authors
Diana Otrocol
Tiberiu Popoviciu Institute of Numerical Analysis Romanian Academy Cluj-Napoca, Romania
Veronica Ilea
Department of Applied Mathematics Babes-Bolyai University Cluj-Napoca, Romania
Keywords
Picard operator; weakly Picard operators, polylocal problem; fixed points; data dependence.
Paper coordinates
V.Ilea, D.Otrocol, On a D.V. Ionescu’s problem for functional-differential equations, Fixed Point Theory, 10 (2009) no. 1, pp. 125-140.
About this paper
Journal
Fixed Point Theory
Publisher Name
House of the Book of Science Cluj-Napoca
DOI
Print ISSN
1583-5022
Online ISSN
2066-9208
google scholar link
[1] O. Arama, Contributions to the study of polylocal problems relative to differential equations, Ph.D. Thesis (in Romanian), Cluj, 1965.
[2] D.V. Ionescu, Quelques theorems d’existence des int´egrales des systemes d’equations differentielles, C.R. de l’Acad. Sci. Paris, 186(1929), 1262-1263.
[3] Ph. Hartman, A. Wintner, On an oscillation criterion of de la Vallee Poussin, Quaterlyof Applied Mathematics, 13(1955), no. 3, 330-332
[4] V. Mure¸san, Differential equation with linear modification of arguments, Transilvania Press, Cluj-Napoca, 1997.
[5] A.I. Perov, A.V. Kibenko, On a general method to study boundary value problems, Iz. Akad. Nauk., 30(1966), 249-264.
[6] A. Petru¸sel, I.A. Rus, Fixed point theorems in L-spaces, Proc. Amer. Math. Soc., 134(2006), 411-418.
[7] A. Petru¸sel, I.A. Rus, Mathematical contributions of Professor D.V. Ionescu, Notices from the ISMS, January, 2008, 1-11.
[8] T. Popoviciu, Sur quelques proprietes des fonctions d’une ou deux variables reelles, Mathematica (Cluj), 8(1934), 1-86.
[9] D. Ripianu, On Vall´ee Poussin inequality in the case of second order differential equations (in Romanian), St. Cerc. Mat. (Cluj), 8(1963), 123-150.
[10] I.A. Rus, Picard operators and applications, Scientiae Mathematicae Japonicae, 58 (2003), no.1, 191-219.
[11] I.A. Rus, Functional differential equations of mixed type, via weakly Picard operators, Sem. on Fixed Point Theory Cluj-Napoca, 3(2002), 335-346.
[12] I.A. Rus, Generalized Contractions and Applications, Cluj University Press, ClujNapoca, 2001.
[13] I.A. Rus, Weakly Picard operators and applications, Sem. on Fixed Point Theory, ClujNapoca, 2(2001), 41-58.
[14] I.A. Rus, A. Petru¸sel, M. Serban, Weakly Picard operators: equivalent definitions, applications and open problems, Fixed Point Theory, 7(2006), no. 1, 3-22.
[15] Ch.J. de la Vallee Poussin, Sur l’equation differentialle du second ordre. Determination d’une integrale par deux valeurs assignee. Extension aux equations d’ordre n, J. Math. Pures Appl., 8(1929), 125-144.