## Abstract

In this note we study the limit of iterates of Lupas q-analogue of the Bernstein operators. Also, we introduce a new class of Bernstein-type operators which fix certain polynomials qualitative and quantitative results are established.

## Authors

**Octavian Agratini**

Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

## Keywords

Bernstein polynomials; q-integers, Bhoman-Korovkin theorem; modulus of continuity.

## Paper coordinates

O. Agratini, *On certain q**-analogues of the Bernstein operators*, Carpathian Journal of Mathematics, **34** (2008), pp. 281-286, https://www.jstor.org/stable/43998926

## About this paper

##### Journal

Carpathian Journal of Mathematics

##### Publisher Name

Department of Mathematics and Computer Science, North University of Baia Mare.

##### Print ISSN

1584-2851

##### Online ISSN

google scholar link

[1] Agratini, O.,* Linear operators that preserve some test functions,* Int. J. Math. Math. Sci., 2006 ID 94136, pp. 11, DOI 10.1155/IJMMS

[2] Agratini, O. and Rus, I. A., *Iterates of a class of discrete linear operators via contraction principel, *Comment. Math. Univ. Carolin., 44 (2003), 3, 555-563

[3] Cárdenas-Morales, D., Garrancho, R and Muñoz-Delgado, F. ., *Shape preserving approxim Bernstein-type operators which fix polynomials*, Appl. Math. Comput., 182 (2006), 1615-1622

[4] Gonska, H., Kacsó, D. and Piful, P.,* The degree of convergence of over-iterated positive linear, *op Schriftenreihe des Fachbereichs Mathematik, SM-DU-600, 2005, Universität Duisburg 1-20

[5] King, J. P, *Positive linear operators which preserve x²*, Acta Math. Hungar., 99 (2003), No. 3, 203-208

[6] Lupas, A., *A q-analogue of the Bernstein operator*, University of Cluj-Napoca, Seminar on Numerical and Statistical Calculus, Preprint, No. 9 (1987), 85-92

[7] Ostrovská, S., *q-Bernstein polynomials and their iterates*, J. Approx. Theory, 123 (2003), 232-255.

[8] Ostrovská, S., *On the Lupas q-analogue of the Bernstein operator*, Rocky Mountain J. Math., 36(2006), Number 5, 1615-1629.

[9] Ostrovská, S., *The first decade of the q-Bernstein polynomials: results and perspectives*, J. Math. Anal. Approx. Theory, 2 (2007), No. 1, 35-51

[10] Phillips, G. M., *Bernstein polynomials based on the q-integers*, Ann. Numer. Math., 4 (1997), 511-518

[11] Phillips, G. M., *Interpolation and Approximation by Polynomials*, Springer- Verlag, 2003

[12] Shisha, O. and Mond, B., *The degree of convergence of sequences of linear positive operators,* Proc. Nat. Acad. Sci. USA, 60 (1968), 1196-1200 Faculty of Mathematics and Computer Science,