Valeriu Anisiu
Babes-Bolyai University, Cluj-Napoca, Romania
Keywords
?
Paper coordinates
M.-C. Anisiu, V. Anisiu, On some conditions for the existence of the fixed points in Hilbert spaces, Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 93-100, Preprint, 89-6, Univ.Babeş-Bolyai, Cluj-Napoca, 1989 (pdf filehere)
[1] M.C. Anisiu, Fixed point of retractible mappings with respect to the metric projection, “Babs-Bolyai” Univ., Fac. of Math., Preprint nr.7, 1988, 87-96.
[2] R.F. Brown, Retraction methods in Nielsen fixed point theory, Pacific J. Math. 115(1984), 277-298.
[3] Ey Fan, Extensions of two fixed point theorem of F.E. Browder, Math. Z. 112(1969), 234-240
[4] Tzu-Chu Lin, Chi-Lin Yen, Applications of the proximity map to fixed point theorem in Hilbert spaces, J. Approx.T heory 52(1988), 141-148.
[5] S. Reich, Some problems and results in fixed point theory, Contemporany Math. 21, 1983, 179-188.
[6] I.A. Rus, The fixed point structures and the retraction mapping principle, “Babs-Bolyai” Univ., Fac. of Math., Preprint nr.3, 1986, 175-184.
[7] S.P.Singh, B. Watson, Proximity maps and fixed points, J.Approx. Theory 39(1983), 72-76.
[8] T.E. Williamson, A geometric approach to fixed points of non-self mappings T:D→X, Contemporary Math. 18, 1983, 247-253.
1989AnisiuAnisiuOnSomeConditionsIttinSeminar
ITIEERAVT SEMINAR ON FUNCTIONAL BQUATIONS, APPROXIMATION ARD CONVEXITY, CLUJ-Napoca, 1989
ON SOWE CONDITIONS FOR THE EYISTENCE OF THE FIXWD POINTS IN HUBERP SPACES by MIRA-CRISTIANA ANISTU "and VALERIU ANISIV (Cluj-Napoca)
In the paper 13//K_(y)13 / K_{y} Fan gave the following theorem:
Let KK be a nonempty compact conver set in a normed linear space XX. For any continuous map ff of KK into XX, there exists a point u in Ku \in K such that ||u-f(u)||=d(f(u),K)\|u-f(u)\|=d(f(u), K).
In the case of Eilbert space, similar theorems were proved by Singh and Watson /7/ and Lin and Yen /4/ for closed convex sots and nonexpansive maps, respectively continuous 1 -set-contractive maps subject to some supplementary conditions.
It is interesting to observe that in the case of Eilbert space with KK closed convex set, the conclusion in Fan theorer means exactely u=P_(K)*f(u)u=P_{K} \cdot f(u), where P_(K)P_{K} is the metric projection. Consequently, the theorems of this type prove the existence of fixed points for the map P_(K)*fP_{K} \cdot f. If such a fixed point is aiso a firec point for the map ff, we obtain a fixed point theorer for the given map.
In the paper /4/ one gives five conditions, the fourth of ther beins just F_(ix)I=FixF_(K^(@))IF_{i x} I=F i x F_{K^{\circ}} I. The ail 0.0 .. tires acte is to study the relations between the claases of maps satisfying
these conditions. 111 of thon ane surficient conditions for Rix f=f= Fix P_(z)f\mathrm{P}_{\mathrm{z}} \mathrm{f}. Such problems weme studied also by Reich /E/ and ililliamson /8/.
Te finst prove two auxiliary lemas.
Let XX ie a noraed space, A sube XA \subseteq X a nonvoid conver set and a_(0)a_{0} in A. Denote I_(A)(a_(0))={a_(0)+t(a-a_(0)):t > 0,a in2}I_{A}\left(a_{0}\right)=\left\{a_{0}+t\left(a-a_{0}\right): t>0, a \in 2\right\} and d(x,A)=inf{||d(x, A)=i n f\{\| m-a ||:a in Lambda}\|: a \in \Lambda\} for any xx in XX.
Leama 1. For encit xx in x,lim_(t rarr0r)(1)/(t)d(a_(0)+1;(x-a_(0)),A)=x, \lim _{t \rightarrow 0 r} \frac{1}{t} d\left(a_{0}+1 ;\left(x-a_{0}\right), A\right)= =i n f_(t rarr0)(l)/(t)d(a_(0)+t(x-a_(0)),A)=d(x_(,)I_(A)(a_(0)))=\inf _{t \rightarrow 0} \frac{l}{t} d\left(a_{0}+t\left(x-a_{0}\right), A\right)=d\left(x_{,} I_{A}\left(a_{0}\right)\right).
Broof, Eecause of the convexity of AA, the map d(0,A):X longrightarrow rarrR_(+)d(0, A): X \longrightarrow \rightarrow R_{+}is convex. It follows that varphi:R_(+)rarrR_(+),varphi(t)==d(alpha_(0)+t(x-a_(0)),d)\varphi: R_{+} \rightarrow R_{+}, \varphi(t)= =d\left(\alpha_{0}+t\left(x-a_{0}\right), d\right) is a convex map, kence psi:R_(+)\\{0}longrightarrowR_(+)\psi: R_{+} \backslash\{0\} \longrightarrow R_{+}, psi(t)=(1)/(t)d(a_(0)+i(x-a_(0)),lambda)\psi(t)=\frac{1}{t} d\left(a_{0}+i\left(x-a_{0}\right), \lambda\right) is an increasing map (we have psi(t)=(1)/(t)(psi(t)-varphi(0))\psi(t)=\frac{1}{t}(\psi(t)-\varphi(0)) ) , That is why the first equality in the Ingma holds.
It is obvious that (1)/(t)d(a_(0)+t(x-a_(0)),Delta)=(J)/(t)d(t(x-a_(0)),A-a_(0))=d(x-a_(0),(I)/(t)(A-a_(0)))\frac{1}{t} d\left(a_{0}+t\left(x-a_{0}\right), \Delta\right)=\frac{J}{t} d\left(t\left(x-a_{0}\right), A-a_{0}\right)=d\left(x-a_{0}, \frac{I}{t}\left(A-a_{0}\right)\right),
bence imf_(t rarr0)((l)/(t)d)(a_(0)+t(pi-a_(0)),A)=i n f_(t rarr0)d(z-a_(0),t(A-a_(0)))=\operatorname{imf}_{t \rightarrow 0} \frac{l}{t} d\left(a_{0}+t\left(\pi-a_{0}\right), A\right)=\inf _{t \rightarrow 0} d\left(z-a_{0}, t\left(A-a_{0}\right)\right)= =i n f_(t rarr0)d(x,a_(0)+t(a-a_(0)))=i n f_(i rarr0)ini_(a in A)||pi-a_(0)-t(a-a_(0))||==\inf _{t \rightarrow 0} d\left(x, a_{0}+t\left(a-a_{0}\right)\right)=\inf _{i \rightarrow 0} \operatorname{ini}_{a \in A}\left\|\pi-a_{0}-t\left(a-a_{0}\right)\right\|= =d(x_(1)I_(Lambda)(a_(0)))=d\left(x_{1} I_{\Lambda}\left(a_{0}\right)\right) 。
Eemax. The nonotony of psi\psi implies d(x_(1)x_(1)(a_(0)))=d\left(x_{1} x_{1}\left(a_{0}\right)\right)= =lim_(0 < t <= 1)(1)/(tau)d(a_(0)+t(Sigma-a_(0)),A)=\lim _{0<t \leq 1} \frac{1}{\tau} d\left(a_{0}+t\left(\Sigma-a_{0}\right), A\right).
Let XX be a prehilbertian apace, A sube XA \subseteq X a monvoid conplete cunver sot, a_(0)a_{0} in Lambda,x\Lambda, x in XX and P;X rarr AP ; X \rightarrow A the proximity wap.
The next lema gives a characterization of the fact that a_(0)a_{0} is the point of best approximation in Delta\Delta for xx, using the vellknown one: PX=a_(0)P X=a_{0} i. XX. Re(:X-a_(0),a-a_(0):) <= 0R e\left\langle X-a_{0}, a-a_{0}\right\rangle \leqslant 0 for each a in A.
Lenra 2. In a prebilbertian space XX, for a nonvoid complets conver set A sube XA \subseteq X and a_(0)a_{0} in A,xA, x in XX the following assertions are equivalent:
I^(0)=>2^(0)I^{0} \Rightarrow 2^{0}. Let a_(0)=Pza_{0}=P z. Denote A_(0)=A-a_(0)A_{0}=A-a_{0} and x_(0)=x-a_(0)x_{0}=x-a_{0}. Then using Iemma 1 and the remark after, one has
{:[a(x,T_(A)(a_(0)))^(2)=i n f_(0 < t < 1)(j)/(t^(2))d(a_(0)+t(x rarra_(0)),A)^(2)=],[=i n f_(0 < t <= 1)(l)/(t^(2))d(tx_(0),A_(0))^(2)=i n f_(0 < t)d(x_(0),(l)/(tA_(0)))^(2)=],[=i n f_(t >= 1)d(x_(0),tA_(0))^(2)=i n f_(t >= 1)i n f_(lambda in A)||x_(0)-ta||^(2)=],[=i n f_(t >= 1)i n f_(a inA_(0))(t^(2)||a||^(2)-2tRe(:x_(0),a:)+||x_(0)||^(2))=],[=i n f_(2inA_(0))i n f2(t^(2)||a||^(2)-2tRe(:x_(0),2:)+||x_(0)||^(2))]:}\begin{aligned}
a\left(x, T_{A}\left(a_{0}\right)\right)^{2} & =\inf _{0<t<1} \frac{j}{t^{2}} d\left(a_{0}+t\left(x \rightarrow a_{0}\right), A\right)^{2}= \\
& =\inf _{0<t \leq 1} \frac{l}{t^{2}} d\left(t x_{0}, A_{0}\right)^{2}=\inf _{0<t} d\left(x_{0}, \frac{l}{t A_{0}}\right)^{2}= \\
& =\inf _{t \geq 1} d\left(x_{0}, t A_{0}\right)^{2}=\inf _{t \geq 1} \inf _{\lambda \in A}\left\|x_{0}-t a\right\|^{2}= \\
& =\inf _{t \geq 1} \inf _{a \in A_{0}}\left(t^{2}\|a\|^{2}-2 t R e\left\langle x_{0}, a\right\rangle+\left\|x_{0}\right\|^{2}\right)= \\
& =\inf _{2 \in A_{0}} \inf ^{2}\left(t^{2}\|a\|^{2}-2 t R e\left\langle x_{0}, 2\right\rangle+\left\|x_{0}\right\|^{2}\right)
\end{aligned}
But Re(:I_(0),2:)=Re(:( bar(x))-a_(0),a+a_(0)-a_(0):) <= 0\operatorname{Re}\left\langle I_{0}, 2\right\rangle=\operatorname{Re}\left\langle\bar{x}-a_{0}, a+a_{0}-a_{0}\right\rangle \leq 0 and the function to be minimized ior t >= lt \geqslant l is increasing on the intervel ( Be(:x_(0),a:)p_(0)\mathrm{Be}\left\langle x_{0}, a\right\rangle p_{0} ) which includes [0,oo)[0, \infty), hence the infimum is atteined in t=l_(0)t=l_{0}.
and d(x,I_(2)(a_(0)))=||x-a_(0)||d\left(x, I_{2}\left(a_{0}\right)\right)=\left\|x-a_{0}\right\|. 2^(0)=>3^(0)2^{0} \Rightarrow 3^{0} being obvious, we have to prove 3^(0)=>1^(0)3^{0} \Rightarrow 1^{0}. But ||x-a_(0)|| <= d(x,I_(A)(a_(0))) <= a(x,A) <= ||x-a_(0)||\left\|x-a_{0}\right\| \leqslant d\left(x, I_{A}\left(a_{0}\right)\right) \leqslant a(x, A) \leqslant\left\|x-a_{0}\right\|, because A subeI_(A)(a_(0))A \subseteq I_{A}\left(a_{0}\right) and the lemma is proved.
Let XX be a prehilbertian space, A sube XA \subseteq X a nonvoid complete convex set. and f:A rarr Xf: A \rightarrow X.
The following conditions appear: in /4/, where are named also the authors to which they belong:
(1) For each a in AA, there is a number lambda\lambda (real or complex, depending on whether the vector space XX is real or complex) such that |lambda| < 1|\lambda|<1 and a+(1-lambda)f(a)in Aa+(1-\lambda) f(a) \in A.
(2) For each a in Aa \in A with a!=f(a)a \neq f(a), there exists bb in I_(A)(a)I_{A}(a) auch that ||b-f(a)|| < ||a-f(a)||\|\mathrm{b}-\mathrm{f}(\mathrm{a})\|<\|\mathrm{a}-\mathrm{f}(\mathrm{a})\|.
(3) For each a in A,f(a)in cII_(A)(a)a \in A, f(a) \in c I I_{A}(a), i.e. I is weakly inward.
(4) For each a in the boundary del A\partial A of AA with a=P@f(a)a=P \circ f(a), a is a fixed point of II.
(5) For each aa in del A,||f(a)-a^(')|| <= ||a-a^(')||\partial A,\left\|f(a)-a^{\prime}\right\| \leqslant\left\|a-a^{\prime}\right\| for some a^(')a^{\prime} in AA.
Remark. Fix I=I= Fix Pof iff (4) holds.
If Pix f=f= Fix Polf, (4) is obvious.
We have always Fix f subef \subseteq Fix Pof. Let a ina \in Fix Pof, hence a==P(f(a));a in del A;a= =P(f(a)) ; a \in \partial A ; (4) implics a ina \in Fix ff and Fix Pof == Fix ff.
We mention that Fix f=Fixf=F i x Pof is exactely the condition given by Brown in /2/ for +-\pm to be retractible on A with respect to PP (see also /6/); fixed point theorems for such maps are obtained in 1//11 / 1.
THEDREM. The conditions above are related by the following implications : (3)=>(4)_((2))lArr(5)(3) \Rightarrow \underset{(2)}{(4)} \Leftarrow(5), where in (1') lambda in C\lambda \in C. (1')
Proof.
(1) =>\Rightarrow (3). Let a in Aa \in A and a^(')=lambda a+(1-lambda)f(a)in Lambda,lambda in(-1,1)a^{\prime}=\lambda a+(1-\lambda) f(a) \in \Lambda, \lambda \in(-1,1). It follows f(a)=(1)/(I-lambda)(a^(')-lambda a)=a+(1)/(I-lambda)(a^(')-a)inI_(A)(a)sube cII_(A)(a)f(a)=\frac{1}{I-\lambda}\left(a^{\prime}-\lambda a\right)=a+\frac{1}{I-\lambda}\left(a^{\prime}-a\right) \in I_{A}(a) \subseteq c I I_{A}(a). (3)=>(4)(3) \Rightarrow(4). Let a in del A,a=P=I(a)a \in \partial A, a=P=I(a). Voing the implication 1^(0)=>2^(0)1^{0} \Rightarrow 2^{0} in Lemaa 2, one has ||f(a)-a||=d(f(a),I_(1)(a))\|f(a)-a\|=d\left(f(a), I_{1}(a)\right). But f(a)in CII_(A)(a)f(a) \in C I I_{A}(a), hence ||f(a)-a||=0\|f(a)-a\|=0 and f(a)=af(a)=a.
(5) =>\Rightarrow (4). Let a in del A,a!in f(a)a \in \partial A, a \notin f(a). Applying (5), one obtains a point a' in & such that ||(r^(˙))(a)-a^(')|| <= ||a-a^(')||\left\|\dot{r}(a)-a^{\prime}\right\| \leq\left\|a-a^{\prime}\right\|. Then o_(y) >= ||a-a^(')||^(2)-o_{y} \geq\left\|a-a^{\prime}\right\|^{2}- -||f(a)-a||^(2)=||a-f(a)+f(a)-a||^(2)-||f(a)-a||^(2)=||a-f(a||^(2)+:}-\|f(a)-a\|^{2}=\|a-f(a)+f(a)-a\|^{2}-\|f(a)-a\|^{2}=\| a-f\left(a \|^{2}+\right.
2Re<a-f(a), {:f(a)-a^('):)\left.f(a)-a^{\prime}\right\rangle. Ifor this at one has
and using the characterization of the metric projection it follows
a !=P@f(a)\neq P \circ f(a).
(4) =>\Rightarrow (2). Liet a in A,a!=f(a)a \in A, a \neq f(a). For a ina \in int AA and t in(0,1)t \in(0,1) : sufficiently small, b_(r)=a+t(f(a)-a)in Ab_{r}=a+t(f(a)-a) \in A and ∣b-f(a)||quad=\mid b-f(a) \| \quad=
For a in del Aa \in \partial A, zet us suppose ||b-f(a)|| >= ||a-I(a)||\|b-f(a)\| \geqslant\|a-I(a)\| for each bb in I_(A)(a)I_{A}(a). Then ||a-f(a)||d(f(a),I_(A)(a):}\|a-f(a)\| d\left(f(a), I_{A}(a)\right. and applying 3^(0)=>1^(0)3^{0} \Rightarrow 1^{0} in Iema 2 it follows P_(0)f(a)=a\mathrm{P}_{0} \mathrm{f}(\mathrm{a})=a, contradicting (4). It follows that (2) is true in this case too.
(2) =>\Rightarrow (4). Let a in del A,a!=f(a)a \in \partial A, a \neq f(a). Condition (2) implies d(I(a),I_(A)(a)) < ||a-f(a)||d\left(I(a), I_{A}(a)\right)<\|a-f(a)\|; using now the implication 1^(0)=>3^(0)1^{0} \Rightarrow 3^{0}
in lemma 2, Pof (a)f(a) \not f a and (4) is proved.
All the implications which do not contain condition (2) are true in the complex case too. It remains to prove only that in
Tisis case(1')Longrightarrow\Longrightarrow(4).
" Let "a in del A,a!=f(a)". By "(1^('))", thare is "lambda in C,|lambda| < 1" such "\text { Let } a \in \partial A, a \neq f(a) \text {. By }\left(1^{\prime}\right) \text {, thare is } \lambda \in C,|\lambda|<1 \text { such }
that a^(')=lambda a+(1-lambda)f(a)in Aa^{\prime}=\lambda a+(1-\lambda) f(a) \in A .
Lieve ||a-f(a)|| > ||lambda||a-f(a)||=||lambda a-lambda f(a)||=\|a-f(a)\|>\|\lambda\| a-f(a)\|=\| \lambda a-\lambda f(a) \|= =||lambda a+(1-lambda)f(a)- hat(I)(a)||=||a^(!)-f(a)|| >= d(f(a),A)=\|\lambda a+(1-\lambda) f(a)-\hat{I}(a)\|=\left\|a^{!}-f(a)\right\| \geq d(f(a), A) ,hence :.(f(a),A) < ||a-f(a)||\therefore(f(a), A)<\|a-f(a)\| and a!=Pof(a)a \neq P o f(a) .
One may present the five classes of functions in tha following Yonn diagram(2 and 4 coincide):
It follows a list of six examples el-e 6 showing that every set which appears in the diagram is nonvoid.
Example el satisfies( 1 ),but not(5).
Let X=B,A=[0,1],f(x)=3-3x;x_(0)=3//4X=B, A=[0,1], f(x)=3-3 x ; x_{0}=3 / 4 is a fixed point. For each a in Lambda\Lambda and lambda=2//3\lambda=2 / 3 one has lambda a+(1-lambda)r(a)=1-a//3in Lambda\lambda a+(1-\lambda) r(a)=1-a / 3 \in \Lambda and(I)holds.But for a=0a=0 one has f(a)^('')=3f(a)^{\prime \prime}=3 and |3-a^(')| > a^(')\left|3-a^{\prime}\right|>a^{\prime} for each a'in Lambda\Lambda .
Example e2 satisfies(1)and(5).
Let XX be a normed spece,A sube XA \subseteq X nonvede and I:A rarr K,f(x)==XI: A \rightarrow K, f(x)= =X(or any f:Lambda rarr Lambdaf: \Lambda \rightarrow \Lambda ,for AA convers set).
Graple e3 satisfies(3)and(5),but not(1).
Let X=R^(2),Delta={(a_(1),a_(2))inR^(2);a_(1) >= 0,a_(2) >= 0,a_(1)^(2)+a_(2)^(2) <= 1}X=R^{2}, \Delta=\left\{\left(a_{1}, a_{2}\right) \in R^{2} ; a_{1} \geq 0, a_{2} \geq 0, a_{1}^{2}+a_{2}^{2} \leq 1\right\}. The Iunction f(a)=((a_(1))/(1+sqrt(1-a_(a)^(2))),1),a=(a_(1),a_(2))f(a)=\left(\frac{a_{1}}{1+\sqrt{1-a_{a}^{2}}}, 1\right), a=\left(a_{1}, a_{2}\right) bes (0,1)(0,1) as
a fixed point.
Tor a=(1,0)a=(1,0) one has lambda\lambda \&mu(1-lambda)f(a)=(1,1-lambda)!=lambda,quad20=|lambda| < 1\mu(1-\lambda) f(a)=(1,1-\lambda) \neq \lambda, \quad 20=|\lambda|<1 .
致品兰 e4 satistios(5),but not(3).
Let X=Z^(2)X=Z^{2} ,AA the same as in mamble ej and f:A rarr If: A \rightarrow I be siven by f(a)=((a_(1))/(2)(1+(1)/(1+sqrt(1-a_(t)^(2)));1,1)Ior a=(:a_(1),a_(2);in A:}f(a)=\left(\frac{a_{1}}{2}\left(1+\frac{1}{1+\sqrt{1-a_{t}^{2}}} ; 1,1\right) \operatorname{Ior} a=\left\langle a_{1}, a_{2} ; \in A\right.\right., Which aas (0,1)(0,1) as a pixed point.
For a=((sqrt2)/(2),(sqrt2)/(2))a=\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) ,one has f(a)!=f(a) \neq cl I_(d)(a)I_{d}(a) .
Frample es satisfies(3),but not(i)and(5).
Iet Y=R^(2),alpha=arcsin 1//3,A={(a_(1),a_(2)):a_(1) >= 0,a_(2) >= :} >= a_(1)Y=R^{2}, \alpha=\arcsin 1 / 3, A=\left\{\left(a_{1}, a_{2}\right): a_{1} \geq 0, a_{2} \geq\right. \geqslant a_{1} 繁 {: alpha,a_(1)^(2)+a_(2)^(2) <= 1}\left.\alpha, a_{1}^{2}+a_{2}^{2} \leq 1\right\} and f:Delta rarr pif: \Delta \rightarrow \pi be given b_(J)f(a)=b_{J} f(a)= =(0,(1)/(sqrt(1-a_(i)^(2))))=\left(0, \frac{1}{\sqrt{1-a_{i}^{2}}}\right) ,for which (0,1)(0,1) is a fixed potnt.
For a=(cos alpha,sin alpha),f(a)=(0,3)a=(\cos \alpha, \sin \alpha), f(a)=(0,3) and(1)and(5)do not bold.
Example e6 satisfies(4),but not(3)and(5).
Let X=R^(2),Delta={(a_(1),a_(2)):a_(1)^(2)+a_(2)^(2) <= 1}X=R^{2}, \Delta=\left\{\left(a_{1}, a_{2}\right): a_{1}^{2}+a_{2}^{2} \leq 1\right\} and I:A rarr II: A \rightarrow I , fixed point.
For a=(sqrt2//2,sqrt2//2),(3)a=(\sqrt{2} / 2, \sqrt{2} / 2),(3) and(5)do not hold.
All the maps in these sxamplos have fixed points,as a conse- quence of the results in/4/,for example of Corollary 4.There are maps with Fix I Fiff which do not satisfy condition(4),as vec(I)(x)=2x,I:[0,1]rarrR_(".")\vec{I}(x)=2 x, I:[0,1] \rightarrow R_{\text {.}}.
Bemark.From the Venn diagram one can see that in the real case all the implications in the theorem are irreversible,finis is also true in the complex cane,because the examples related to the conditions(3)and(4),respectively(5)and(4)can bo considered in the space CC with the scalar field C.It remains to sive an example for(1')=>\Rightarrow(4).
Itrapple el setisties(4),but not(1').
{:[" Let "X=C^(2)","A={(a_(1),a_(2))inC^(2):|a_(1)|^(2)+|a_(2)|^(2) <= 1}","f:],[:A cdots X","f(a)=(a_(1)+a_(2),a_(2))","" for "a=(a_(1),a_(2))inC^(2)","" which has "a=],[=(a_(1),0)in Delta" as fined points. "],[quad" Me point "a=(0","1)" does not satisfy condition (I'). "]:}\begin{aligned}
& \text { Let } X=C^{2}, A=\left\{\left(a_{1}, a_{2}\right) \in C^{2}:\left|a_{1}\right|^{2}+\left|a_{2}\right|^{2} \leq 1\right\}, f: \\
& : A \cdots X, f(a)=\left(a_{1}+a_{2}, a_{2}\right), \text { for } a=\left(a_{1}, a_{2}\right) \in C^{2}, \text { which has } a= \\
& =\left(a_{1}, 0\right) \in \Delta \text { as fined points. } \\
& \quad \text { Me point } a=(0,1) \text { does not satisfy condition (I'). }
\end{aligned}
REJENEES
... ... S. نrisiu, Fixed points of retractible mapoings with respect to the metric projection, "Babeş-Bolyai" Univ., Fac. of Math., Preprint ir. 7, 1988, 87-96:
2. ?. P. Srown, Retraction wethods in Fielsen fixed point theomy; Pacific J. Math. 115(1984), 277-298
3. I bar(J)\bar{J} Fan, Extensions of two Pixed point theorems of F. E. Browder, Hath. Z, 112(1969), 234-240
:- Tzu-Chu Lin, Chi-Lin Yen, Applications of the proximity map to fired point theorems in Hilbert spaces, J. Approx. Theory 22(2988), 241-148
5. S.Reich, Some problems and results in fixed point theory, Contemporary Math. 21, 1983, 179-188
5. I.d. Tus, The fixed point structures and the retraction mapping. principle, "Babes-Bolyai" Univ, Fac. of Mathos Preprint nr. 3, 1986, 175-184
7. S.P.Singh, B.ilatson, Proximity mape and fixed points, J. Approx. Theory 29 (1983), 72~76
8. T. E. Jilliamson, A geometric approacin to rized points of nomself mappings T:D rarr piT: D \rightarrow \pi, Contenporary Hath. 2.8 . 1983, 247-253.
This paper is in fingl form and no veraion of it will be : aubitted for publication alsomhere.