On the Misra-Prigogine-Courbage Theory of Irreversibility


Stochastic processes and dynamical systems in measure spaces are defined as classes of random variables in the Doob sense. Markov  processes which are ergodic into a “strong” sense are shown to be suitable models for the thermodynamic irreveribility. These processes are also isomorphic, in the Doob sense, with Bernoulli dynamical systems defined into the space of trajectories. In this approach, we show that the Misra Prigogine-Courbage theory of irreversibility can be formulated as a change of representation of strong ergodic Markov processes. The physically meaning is that all experimentally observed strong ergodic Markov processes can be “lifted” to a unitary “superdynamics”.


Nicolae Suciu
Tiberiu Popoviciu Institute of Numerical Analysis, Romanian Academy

Adelina Georgescu
Faculty of Sciences, University of Pitești


Cite this paper as:

N. Suciu, A. Georgescu, On the Misra-Prigogine-Courbage theory of irreversibility, Buletin ştiintific – Univ. Piteşti, Seria Mat. şi Inf., 2 (1998), pp. 169-188.



Not available yet.

About this paper


Buletin Științific
Univesitatea din Pitești

Publisher Name


Print ISSN
Online ISSN





[1] I. E., Antoniou, K. E. Gustafson, From Probabilistic Description to Deterministic Dynamics Physica 179A (1993), 153-166.

[2] M. Courbage, On Boltzmann Entropy and Coarse-Graining for Classical Dynamical Systems,  in Information Dyamics, Ed. H. Atmanspacher and  H. Scheingraber, Plenum Press, new-York, 1991.

[3] I. S. Cornfeld, S, Fomin and  Ya. G. Sinai, Ya. G., Ergodic Theory,  Springer-Verlag, 1982.

[4] C. W. Gardnier, Hanbdbook of Stochastic Methods (for Physica), Chemistry and Natural Science), Springer-Verlag, 1983.

[5] N. A. Friedman and D. S. Ornstein,  On Isomorphism of Weak Bernoulli Transformation, Adv. Math. 5 (1971), 365-394.

[6] S. Goldstein, J. L. Lebowitz and E. Presutti,  Stationary Markov Chains, in J. Fritz, J. L. Lebowitz and D. Szasz editors, Rigorous results in statistical mechanics and quantum field theory, Colloquia Matematica Societatis Janos Bolyali, 27, North Holland, Amsterdam, 1981.

[7] M. Iosifescu and P. Tăutu,  Stochastic Processes and Applications in Biology and Medicine.  I. Theory, Editura Academiei București and Springer-Verlag, București, 1973, 1970.

[8.] A. Kolmogorov and S. Fomin, Elementes de la theorie des fonctions et de l’analyse fonctionelle,  Mir. Moscou, 1975.

[9] A. Lasota and M. C. Mackey,  Probabilistic Properties of Deterministic System,  Springer-Verlag, New York, 1985; Second edition, as.  Lasota, A., and Mackey M. C., Chaos, Fractals, and noise, Stochastic aspects of  dynamics, Springer-Verlag, 1994.

[10] M. C. Mackey, The Dynamic Origin of Increasing Entropy,  Rev. of. Modern Phys., 61, 6 (1989), 981-1016.

[11] P. Malliavin,  Integration and Probabilistic, Springer-Verlag, New York, 1995.

[12] R. McCabe and P. Shields,  A class of Markov Shifts which are Bernoulli Shifts,  Adv. Math. 6 (1971), 323-328.

[13] B. Misra, I. Prigogine and M. Courbage,  From Deterministic Dynamics to Probabilistic Description, Physica 98 A (1979), 1-26.

[14] G. Niclis and C. Nicolis,  Chaotic Dynamics, Markovian Coarse-Graining and Information, Physica A, 163 (1990), 215-231.

[15] D. S. Ornstein and P. C. Shields,  Mixing Markov Shifts of Kernel type are Bernoulli,  Advances in Mathematics, 10 (1973), 143-146.

[16] V. A. Rokhlin,  Exact Endomorphisme of Lebesque Spaces,  Am. Math. Soc. Transl., (2) 39 (1964), 1-36.

[17] G. Ya, Sinai,  Introduction to Ergodic Theory,  Princeton Univ. Press., 1976.

[18] N. G. van Kampen, Stochastic Processes in Physics and Chemistry,  North-Holland, 1981.

[19] A. D. Wntzell,  A Course in the Theory of Stochastic Processes,  McGraw-Hil International Bokk Company, 1981.



Related Posts