## Abstract

We deal with the existence and localization of positive radial solutions for Dirichlet problems involving \(\phi\)-Laplacian operators in a ball. In particular, \(p\)-Laplacian and Minkowski-curvature equations are considered.

Our approach relies on fixed point index techniques, which work thanks to a Harnack-type inequality in terms of a seminorm. As a consequence of the localization result, it is also derived the existence of several (even infinitely many) positive solutions.

## Authors

**Radu Precup**

Department of Mathematics Babes-Bolyai University, Cluj-Napoca, Romania

## Keywords

compression–expansion, Dirichlet problem, fixed point index, Harnack-type inequality, mean cur-vature operator, Positive radial solution

## Paper coordinates

R. Precup, J. Rodríguez-López, *Positive radial solutions for Dirichlet problems via a Harnack-type inequality, *Mathematical Methods in the Applied Sciences, **46** (2023) no. 2, pp. 2972-2985, https://doi.org/10.1002/mma.8682

## About this paper

##### Journal

Mathematical Methods in the Applied Sciences

##### Publisher Name

Wiley

##### Print ISSN

0170-4214

##### Online ISSN

1099-1476

google scholar link

[1] Benedikt J, Girg P, Kotrla L, Takac P. Origin of thep-Laplacian and A. Missbach.Electron J Differ Equ. 2018;2018(16):1-17.

[2] Bartnik R, Simon L. Spacelike hypersurfaces with prescribed boundary values and mean curvature.Commun Math Phys. 1982;87:131-152.

[3] Ecker K. Mean curvature evolution of spacelike hypersurfaces, Proceedings of the Centre for Mathematics and its Applications.AustralianNat Univ. 1999;37:119-132.

[4] Athanassenas M, Clutterbuck J. A capillarity problem for compressible liquids.Pacific J Math. 2009;243:213-232.

[5] López-Gómez J, Omari P, Rivetti S. Positive solutions of a one-dimensional indefinite capillarity-type problem:A variational approach.J Differ Equ. 2017;262:2335-2392.

[6] Bereanu C, Jebelean P, Mawhin J. Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces.Proc Amer Math Soc. 2009;137(1):161-169.

[7] Bereanu C, Jebelean P, ̧Serban C. Dirichlet problems with mean curvature operator in Minkowski space. In: New Trends in Differential Equations, Control Theory and Optimization: Proceedings of the 8th Congress of Romanian Mathematicians; 2016:1-20.

[8] Bereanu C, Jebelean P, Torres PJ. Positive radial solutions for Dirichlet problems with mean curvature operators in Minkowski space.J FunctAnal. 2013;264:270-287.

[9] Bereanu C, Jebelean P, Torres PJ. Multiple positive radial solutions for a Dirichlet problem involving the mean curvature operator in Minkowski space.J Funct Anal. 2013;265:644-659.

[10] Coelho I, Corsato C, Rivetti S. Positive radial solutions of the Dirichlet problem for the Minkowski-curvature equation in a ball, Topol.Methods Nonlinear Anal. 2014;44(1):23-39.

[11] Corsato C, Obersnel F, Omari P, Rivetti S. Positive solutions of the Dirichlet problem for the prescribed mean curvature equation in Minkowski space.J Math Anal Appl. 2013;405(1):227-239.

[12] García–Huidobro M, Manásevich R, Schmitt K. Positive radial solutions of quasilinear elliptic partial differential equations on a ball. Nonlinear Anal. 1999;35:175-190.

[13] He X. Multiple radial solutions for a class of quasilinear elliptic problems. Appl Math Lett. 2010;23(1):110-114.

[14] Ma R, Gao H, Lu Y. Global structure of radial positive solutions for a prescribed mean curvature problem in a ball. J Funct Anal.2016;270:2430-2455.

[15] Herlea D-R, Precup R. Existence, localization and multiplicity of positive solutions to -Laplace equations and systems. Taiwan J Math.2016;20:77-89.

[16] Precup R, Rodríguez-López J. Positive solutions for discontinuous problems with applications to -Laplacian equations. J Fixed PointTheory Appl. 2018;20:1-17.

[17] Precup R, Pucci P, Varga C. Energy-based localization and multiplicity of radially symmetric states for the stationary p-Laplace diffusion.Complex Var Elliptic Equ. 2020;65:1198-1209.

[18] Precup R. Moser–Harnack inequality, Krasnosel’skiı type fixed point theorems in cones and elliptic problems. Topol Methods Nonlin Anal.2012;40:301-313.